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ABSTRACT 

 

TIME SERIES MODELING AND DROUGHT FREQUENCY ANALYSIS FOR 

THE ANNUAL RAINFALL OF NORTH CYPRUS 

 

 

 

Yücel, Nazlıcan 

Master of Science, Sustainable Environment and Energy Systems Program 

Supervisor: Asst. Prof. Dr. Bertuğ Akıntuğ 

 

 

September 2021, 177 pages 

 

 

Cyprus which is the third biggest island in the Mediterranean Sea is located in the 

south of Turkey. The island has a semi-arid climate The rainfall is the main source 

of the island, therefore, the analysis of existing rainfall data across the island has 

vital importance for a better sustainable water resource management. In this study, 

annual rainfall data of 33 meteorological stations across North Cyprus were used. 

The main objectives of the study are modeling the annual observed rainfall of North 

Cyprus by using ARIMA models and finding the return period of the most critical 

historical drought events by using ARIMA models. As a result, low order ARIMA 

models were generally found suitable for North Cyprus annual rainfall data. Also, 

for average annual North Cyprus rainfall, the return period of the most severe 

drought event with severity of 406.3 mm, was found as 63 years. For the four sub-

regions of North Cyprus namely, the West part of North Cyprus, North Coast and 

Mesaria Plain, Central Mesaria Plain, and West Coast and Karpas Peninsula, the 
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return periods of the most severe droughts with the severity of 572.4 mm, 319.5 mm, 

319.8 mm, and 555.1 mm, were obtained as 137 years, 26 years, 40 years, and 116 

years, respectively. These results will be very beneficial for the sustainable water 

resource management of North Cyprus. Important precautions can be taken to 

minimize the devastating effects of climate change by the related government 

authorities. 

 

Keywords: ARIMA, Rainfall, North Cyprus, Sustainable Water Resource 

Management, Drought Frequency Analysis 
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ÖZ 

 

KUZEY KIBRIS YILLIK YAĞIŞLARININ ZAMAN SERİSİ MODELLEMESİ 

VE KURAKLIK FREKANS ANALİZİ 

 

 

 

Yücel, Nazlıcan 

Yüksek Lisans, Sürdürülebilir Çevre ve Enerji Sistemleri 

Tez Yöneticisi: Dr. Öğrt. Üyesi Bertuğ Akıntuğ 

 

 

Eylül 2021, 177 Sayfa  

 

Kıbrıs Türkiye’nin güneyinde bulunan, Akdeniz’in üçüncü en büyük adasıdır ve yarı 

kurak iklime sahiptir. Adanın ana su kaynağı yağmur olduğu için, adada hali hazırda 

bulunan ve Türkiye’den gelen su kaynaklarının sürdürülebilir bir şekilde 

kullanılması büyük önem arz etmektedir. Bu çalışmada, Kuzey Kıbrıs genelinde 33 

meteoroloji istasyonunda gözlemlenen yıllık yağış verileri kullanılmıştır. Bu 

çalışmanın temel amaçları, ARIMA modelleri kullanarak Kuzey Kıbrıs’ta 

gözlemlenen yıllık yağışların modellemesi ve bu modelleri kullanarak en kritik 

tarihsel kuraklığın geri dönüş periyodunun bulunmasıdır. Sonuç olarak, genellikle 

düşük değerli ARIMA modellerin bu veriye uygun olduğu bulunmuştur. Ayrıca, 

Kuzey Kıbrıs genelinde şiddeti 406.3 mm olarak hesaplanan en şiddetli kuraklığın 

geri dönüş periyodu 63 yıl olarak hesaplanmıştır. Kuzey Kıbrıs’ın Batı kesimi, 

Kuzey kıyısı ve Mesarya Ovası, Orta Mesarya ve Karpaz Yarımadası için en şiddetli 

kuraklıkların geri dönüş süreleri sırasıyla 572.4 mm ile 137 yıl, 319.5 mm ile 26 yıl, 
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319.8 mm ile 40 yıl ve 555.1 mm ile 116 yıl olarak bulunmuştur. Tüm bu sonuçlar, 

Kuzey Kıbrıs'ın sürdürülebilir su kaynakları yönetimi için çok faydalı olacak ve 

iklim değişikliğinin yıkıcı etkilerini en aza indirmek için devlet yetkilileri tarafından 

önemli önlemler alınabilmesine yardımcı olacaktır. 

 

Anahtar Kelimeler: ARIMA, Yağmur, Kuzey Kıbrıs, Sürdürülebilir su kaynakları 

yönetimi, Kuraklık frekans analizi 
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CHAPTER 1  

1 INTRODUCTION  

Sustainability plays a significant role on the Earth for a long time. However, it 

became a necessity for the welfare of all living creatures for today and in the future, 

since it aims to meet the demands of all creatures today without making the future 

generations worse off (Loucks, 2000). The sustainability concept includes three main 

pillars that are environment, economy, and society (Duran et al., 2015), and all of 

them are connected. Especially water resources sustainability as a part of 

environmental sustainability became one of the critical issues in the last decades. 

Water resources started to be depleted because of the climate change impacts and 

increasing demand for water caused by population increase. Besides, climate change, 

having insufficient information, and making wrong decisions about water resources 

may affect water demand and supply negatively (Uba & Bakari, 2015).  So, 

nowadays, managing water resources in a sustainable manner gains more 

significance especially for the countries where the main source of water is only 

rainfall like North Cyprus.  For a better water resources management (WRM), 

analysis of rainfall is essential, especially in arid areas (Dastorani et al., 2016) 

because it is known that rainfall is one of the significant components of the 
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hydrologic cycle and it plays a vital role for all living creatures all around the world 

(Papalaskaris et al., 2016).  

Although the times series are generally used in finance and statistics (Maina et al., 

2019), time series modeling also became one of the most important and effective 

techniques for decision making of hydrological elements, simulation, data 

generation, and forecasting (Dastorani et al., 2016). A time series is an observed data 

sequence that is represented in time order and it has two components which are 

deterministic (physical) and stochastic (statistical) (Dabral et al., 2016).  Salas et al. 

(1988) mentioned that while the deterministic approach follows the representation 

of the hydrologic system with physical relationships, the stochastic approach aims to 

assume a model which represents the most related statistical properties of the 

historical time series. Once the historical hydrologic time series data are available, 

some future scenarios can be predicted using time series models. Although the time 

series variables are assumed to be independent and identically distributed, they might 

not be indeed, and they might include some pattern in the long period. So, applying 

time series modeling for predictions gives values to the actual ones. (Adhikari K. & 

R.K., 2013). That is why the results of many studies in the literature indicate that the 

stochastic time series models are useful and appropriate to represent and forecast the 

precipitation data. There are several types of these models such as Autoregressive 

(AR), Moving Average (MA), Autoregressive Moving Average (ARMA), 

Autoregressive Integrated Moving Average (ARIMA), Seasonal Autoregressive 

Integrated Moving Average (SARIMA), Markov Switching models, and transfer 

function noise modeling. (Dastorani et al., 2016). One of the most common and 
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popular stochastic time series models is the ARIMA model, which includes AR, MA, 

and integration (I) processes. According to Adhikari &  Agrawal (2013), this is the 

most preferable model among several stochastic time series models because it 

represents the time series in a simple form, builds the most appropriate model by 

using Box-Jenkins methodology and its implementation is understandable. So, one 

of the important objectives of this study is modeling the annual rainfall of North 

Cyprus by using ARIMA models. 

In hydrology, in most cases, regional and sub-regional hydrologic analyses are 

required. In order to find which rainfall station will be the member of a region or 

sub-region, clustering methodologies are used. In this study, clustering 

methodologies that consider the characteristic of time series are employed. 

In practice, after finding the orders of the ARIMA model for a given time series, the 

parameters of the model are estimated and very long synthetic series that have the 

same statistical properties as the original data can be generated (Mirakbari et al., 

2010, as cited in Ganji et al.,2001). Generated series provides a large number of 

scenarios, so detecting possible extreme events and calculating their exceedance 

probabilities and return periods can be possible.  

In addition to ARIMA modeling, the disaggregation approach is a commonly used 

stochastic approach in hydrologic time-series analyses. The main importance of the 

disaggregation models is preserving the historical statistics at more than one level 

(Salas, 1988). For instance, if the monthly data are modeled directly, annual statistics 

may not be preserved. However, after modeling annual data, it can be disaggregated 
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into the monthly time series by using the disaggregation approach and this monthly 

data preserves the statistical properties at both seasonal and annual levels.  

In statistical and stochastic hydrology, drought frequency analysis is one of the most 

common applications and this application is very important in water resource 

management practices for all countries. When historical hydrologic time series are 

used together with stochastic time series models, the frequency of historical drought 

parameters such as duration, severity, and magnitude can be obtained (Tallaksen, 

2000). Without knowing the frequency or in other words the return period of extreme 

drought events, the sustainable management of water resources is not possible under 

changing climate. 

1.1 Motivation 

Water is a very fundamental natural resource for all living organisms on this planet. 

Especially, freshwater is one of the most challenging issues all around the world. 

Water demand has been increasing gradually in the regions which have semi-arid 

and arid climates especially. In those regions, such as North Cyprus, water supply is 

not sufficient to fulfill water demand because existing water resources and annual 

rainfall amounts are restricted. In the last two decades, these regions suffer from 

extreme events such as droughts, floods, heatwaves, etc. because of climate change 

and these events have a direct role in water resources management (WRM). Rainfall 

is one of the most important climate factors for human-being and the hydrological 

cycle. It is also very valuable for the countries where the main source of water is 
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rainfall like North Cyprus. Therefore, sustainable water resource management 

(SWRM) is required for North Cyprus. If extreme events cannot be under control, 

their consequences may be destructive for environments, societies, and economies. 

For example, agricultural production levels, freshwater quality, and living organisms 

in the biodiversity may be affected in a negative way seriously. The main motivations 

of this study are to find the best fitted time series model to annual rainfall patterns of 

North Cyprus and to detect the return period of the most extreme drought event by 

means of generated synthetic scenarios. The results of this study will be helpful in 

steps of SWRM decisions because these decisions are taken according to the rainfall 

predictions and forecasts in both the short and long run, rainfall characteristics, and 

return periods of extreme events. 

1.2 Objectives of the Study 

This study aims to find out the historical drought parameters and return periods of 

critical droughts in Northern Cyprus by modeling annual time series rainfall data 

using Box and Jenkins methodology. First of all, annual rainfall data are transformed 

to normal as an assumption of the ARIMA models. Then, by applying clustering 

analysis the study area is divided into regions. where they have different rainfall and 

geographical characteristics. So useful information can be inferred from the regional 

evaluations. In the next step, the most appropriate models are identified based on the 

ARIMA modeling procedure. Then, synthetic data from annual aggregated rainfall 

data are generated according to the suitable models. In the one framework, frequency 
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analysis will be performed to average annual observed rainfall data of North Cyprus, 

and drought severity and magnitude and their return periods are estimated. In another 

framework, generated annual data are disaggregated spatially into regions by 

preserving statistical properties at both the general North Cyprus level and regional 

level. Lastly, frequency analysis is applied for each region, and drought properties 

and return periods of the most critical drought for every region are obtained.  

1.3 Structure of the Paper 

In this section, the organization of the thesis is given as the following. Chapter 2 

aims to provide previous studies related to clustering, ARIMA modeling 

applications, disaggregation approach, and drought frequency analysis and their 

general conclusions for rainfall time series. The study area and the data are 

represented in Chapter 3. Chapter 4 explains the methods that are used. Chapter 5 

incorporates the results of the analyses and interpretations of them. Lastly, the thesis 

is concluded in Chapter 6. 
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CHAPTER 2  

2 LITERATURE REVIEW 

This chapter points out the previous studies and approaches in the literature about 

the most used modeling procedures and necessary analysis and tests before 

application of them. 

2.1 Stationarity Check 

The Box and Jenkins methodology aims to create the best-fitted model of a time 

series by using historic values for the purpose of forecasting, synthetic data 

generation, etc. There are four stages of this methodology which are model 

identification, parameter estimation, and diagnostic checking. The data should be 

checked whether it is stationary or not in the first stage because stationarity is an 

important condition for ARIMA modeling (Babazadeh and Shamsnia, 2014). There 

are several methods and tests to control stationarity such as visual check (Hyndman& 

Athanasopoulos, 2018), Autocorrelation Function (ACF) and Partial Autocorrelation 

Function (PACF) plots (Nielsen, 2019), unit root tests such as Augmented Dickey-

Fuller (ADF) and Dickey-Hasza-Fuller (DHF) tests, and stationarity tests such as 

KPSS (Kwiatkowski–Phillips–Schmidt–Shin) and LMC (Leybourne-McCabe). 

These methods were used in many studies in the literature before making statistical 

analyses. 
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For example, Yusof & Kane (2012) aimed to model the rainfall data of two stations 

in Malaysia from 1968 to 2003 by using SARIMA and Exponential Smoothing State 

Space (ETS) models. After the authors plotted the data of two locations visually, 

they noticed the seasonal components and eliminated them by means of differencing 

to make the data stationary. After differencing, visuals showed zero means, i.e. time 

series is stationary. 

Also, Pazvakawambwa and Ogunmokun (2013) conducted a study that aims to 

model Windhoek monthly rainfall data between 1891 and 2011. They checked the 

stationarity in the time series data by using visualization of the values in the data. It 

is found that the time series is stationary because the mean and variance do not vary 

with time. 

Babazadeh and Shamsnia (2014) examined the monthly precipitation and the mean 

temperature data of Shiraz Synoptic Station in Iran from 1983 to 2004. Authors have 

aimed to model and simulate the time series data with stochastic techniques to make 

forecasting. In this study, trend and seasonality are found by using ACF and PACF 

plots. To remove them, the differencing operation was used and achieved stationarity 

in the time series. 

Etuk & Mohamed (2014) performed a time series analysis for monthly data of 

Gadaref rainfall gauge in Sudan for the years 1971-2010. They have used the ADF 

unit root test in order to check stationarity and it was concluded that the time series 

is stationary. However, the ACF plot showed that the data is non-stationary because 
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the seasonality was detected in the data. After seasonal differencing application, both 

the ADF test and ACF plot confirmed that the time series is stationary. 

In another study, Papalaskaris et al. (2016) performed the different models of the 

ADF Unit Root Test on total monthly precipitation data in order to check whether 

the time series satisfy the stationarity condition or not. The authors have aimed to 

reveal potential precipitation trends in Kavala city by analyzing the rainfall data 

between the years 2006 and 2014 with the help of statistical analysis methods. The 

results of three different ADF tests represent that time series data is stationary 

because there are no unit-roots. 

Also, there is another study about time series modeling of monthly rainfall data from 

1971 to 2010 in Nyala Station in Sudan. The stationarity condition was checked by 

using the ADF test and ACF plot and illustrations and results showed that the time 

series is not stationary. Differencing was applied in order to make rainfall data 

stationary. After it, seasonally differenced data satisfied the stationarity condition 

and this conclusion was confirmed by ADF test results (Mohamed & Ibrahim, 2016). 

Kamath & Kamat (2018) have carried out a time series analysis of precipitation data 

of the Idukki district in Kerala. Monthly rainfall data from 2006 to 2016 has been 

used. In this study, stationarity is checked by means of the ADF test and correlation 

plots (ACF and PACF). Both of these methods conclude that the time series is 

stationary. 

Sidiq (2018) has studied rainfall forecasting by applying time series modeling for the 

monthly precipitation data of Bandung city in Indonesia between January 2011 and 
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December 2013. In this study, Sidiq (2018) tested the stationarity of data by plotting 

the historical rainfall values and autocorrelation coefficients. It was found that the 

time series is not stationary and the data was differenced in the attempt in achieving 

stationarity. After differencing, visual checking supported that the time series 

became stationary. 

There is another study that has focused on time series modeling of rainfall 

characteristics of Nakuru county in Kenya. Maina et al. (2019) has aimed to find the 

best-fitted model for Nakuru by using monthly rainfall data from 1997 to 2016. The 

authors have checked the time series plot of the precipitation data and they saw that 

the mean was stationary because there is no trend in the mean. However, they 

realized that a kind of transformation is required because the variance was not 

constant over time as the oscillations showed. After stationary variance was obtained 

using the square root transformation, they plotted the time series again and they saw 

that there was a strong seasonality. In order to remove it, they have performed one 

degree seasonal differencing and achieved stationary data. Although everything 

seems proper visually, they applied the ADF test in order to confirm the stationarity 

formally and results (p-value = 0.01 < 0.05) represented that transformed data was 

stationary (Maina et al., 2019). 

Ampaw et al. (2020) have conducted a study that aims to develop a time series model 

which represents the precipitation patterns in New Juaben Municipality in Ghana 

well over the 18 years between 1993 and 2011. The data were checked for 

stationarity and they saw that it is non-stationary but they have performed a formal 
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test as a confirmation. According to KPSS test results, the time series was not 

stationary and a transformation should be performed. After differencing operation, 

it was tested again with the help of the KPSS test and it was concluded that the 

differenced time series data satisfy the stationarity condition. 

For instance, Papalaskaris (2020) had a study based on forecasting the total monthly 

precipitation of Karyes village in Greece by using the ARIMA method for the period 

from 1982 to 2018. The author aimed to obtain short-term estimations by using 

historical rainfall values and forecasting future patterns. As a prerequisite for time 

series analysis, the stationarity condition was tested by means of three different 

versions of ADF unit root tests. All cases concluded that the time series is stationary. 

However, data was seasonally differenced by order one because the ACF plot 

showed that seasonality. 

2.2 Normality Check 

Since the many statistical analyses assume that the variables are normally distributed, 

the normalization process is necessary to transform the hydrological variables before 

making a statistical analysis. In the literature, several common transformation 

techniques were used in order to make hydrological time series normally distributed 

such as 2 parameter log-normal, 3 parameter log-normal, and Box-Cox 

transformation (Sangal & Biswas (1970), Thyer et al., 2002) 
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2.3 ARIMA Modeling 

In the past, different stochastic models are proposed to model hydrologic time series 

data such as autoregressive models (AR), fractional Gaussian noise models (FGN), 

ARMA models, disaggregation models, ARMA-Markov models, and shot-noise 

models. Some of these models were successful in application but they were not 

preferred because of their critical restrictions (Salas et al.,1988). Especially, Box and 

Jenkins, ARMA, SARIMA, Periodic Autoregressive (PAR), Markov processes, etc. 

were found useful and appropriate to represent and forecast the precipitation data 

(Dastorani et al., 2016). One of the most common and popular stochastic time series 

models is the ARIMA model, which includes AR, MA, and integration processes. 

According to Adhikari & Agrawal (2013), this is the most preferable model among 

several stochastic time series models because it represents the time series in a simple 

form, builds the most appropriate model by using Box-Jenkins methodology and its 

implementation is understandable. These models also include some limitations but 

they generally generate satisfying results in hydrologic data analysis (Salas et 

al.,1988). In the literature, ARMA, ARIMA, and SARIMA are the most preferred 

models for modeling hydrologic and climatic time series. 

For example, in 2009, a study was conducted to find the best-fitted time series model 

for the rainfall data of Iran and categorizing them with the help of clustering analysis. 

The monthly rainfall time series data was used for 28 major stations of Iran between 

1970 and 2000. Soltani et al., (2009) used the ARIMA model and results showed that 

pure seasonal models (ARIMA(P, D, Q)12) and multiplicative models with low and 
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high order parameters ((ARIMA(p,d,q) x (P, D, Q)12) were appropriate for the 

monthly rainfall time series. 

Momani (2009) has studied modeling rainfall time series analysis for Amman station 

in Jordan between 1922 and 1999. Box and Jenkin’s methodology was used in this 

study in order to model the data and ARIMA (1,0,0) (0,1,1)12 was found the most 

adequate model for the water resources analysis and strategies in Jordan. 

Then, Attah and Bankkole (2011) have analyzed the rainfall data of Kaduna, Nigeria 

to create a model which describes the rainfall structures of the region well. In this 

application, the annual rainfall time series was used from 1960 to 2006 (47 years). 

The authors have used Box-Jenkins Methodology and found that ARMA (1,1) is the 

most suitable model for this dataset and it can be used to forecast the future 

characteristics. 

Yusof & Kane (2012) have carried out a monthly time series modeling for rainfall 

data of two selected stations of Malaysia (Kuantan and Malacca) between 1968 and 

2003. The ETS state models and SARIMA models were used in the study. According 

to the results, both of these models were satisfactory for forecasting.  

Also, Pazvakawambwa and Ogunmokun (2013) have examined the monthly rainfall 

data of Windhoek from 1891 to 2011. They have aimed to find the best model which 

represents the data and forecast Windhoek rainfall patterns up to 2050. In this study, 

Box and Jenkin’s modeling techniques were used and found that SARIMA (1,0,1) 

(1,0,2)12 model was proper for the data and used to forecast the monthly rainfall 

based on this seasonal ARIMA model. 
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For instance, Babazadeh and Shamsnia (2014) had a study that focused on finding 

the most suitable model which represents the climatic parameters of Shiraz station 

in Iran for the period from 1983 to 2004 for consistent forecasting. The authors have 

used Box and Jenkin’s methodology in modeling procedures and decided that 

ARIMA (0,0,0) (2,1,0)12 can be used to estimate future precipitation values for the 

Shiraz station.  

In another study, monthly rainfall data for the Gadaref station between 1970 and 

2010 was used to build an appropriate model for the rainfall characteristics of the 

selected station. Multiplicative SARIMA models were applied and proposed three 

different models but SARIMA(0, 0, 0)(0, 0, 1)12 was found the best-fitted one for the 

reliable forecasting and management of the rainfall in this place (Etuk & Mohamed, 

2014). 

Chonge et al. (2015) have used the univariate Box-Jenkins approach to obtain the 

best fitted ARIMA model for the monthly rainfall data of Uasin Gishu County, 

Kenya during the 1977-2014 period. It is concluded that SARIMA (0, 0, 0) (0, 1, 2)12 

represents better the data than other candidate models. 

Balibey and Türkyilmaz (2015) aimed to confirm the suitability of sinusoidal models 

by using the monthly precipitation values of 270 stations over Turkey between 1999 

and 2010. They have compared the results of sinusoidal and ARIMA models and 

validated that the sinusoidal model is more appropriate than another model for this 

data set. 
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Uba and Bakari (2015) have carried out a time series analysis by modeling monthly 

rainfall historical data for Maiduguri station in Nigeria. In this study, the recorded 

data for a period of 30 years (1981-2011) were used. Box-Jenkins modeling 

procedure was applied and ARIMA (1,1,0) model was found the best model for this 

monthly rainfall values. 

Papalaskaris et al. (2016) aimed to model historical rainfall quantities of Kavala city 

in Greece for the years of 2006-2014 in order to use for forecasting short-term future 

values. This research has applied Box and Jenkin’s methodology and concluded that 

SARIMA (0, 0, 0) (0, 1, 1)12 is the best-fitted model for the monthly rainfall data of 

this region. 

Mohamed and Ibrahim (2016) have conducted a time series analysis of rainfall data 

of Nyala station in Sudan between 1971 and 2010. In this study, SARIMA (0, 0, 0) 

(0, 1, 1)12 model was found the most representative model by using the ARIMA 

method for rainfall data of this station. 

There is another study that focused on time series analysis and forecasting of rainfall 

data for India. Kamath and Kamat (2018) have aimed to compare three different time 

series analysis techniques and their forecasting performances by using the monthly 

rainfall data of Idukki for the period from 2006 to 2016. Results have shown that the 

ARIMA model has more accurate forecasting power (with less error) than Artificial 

Neural Network (ANN) and Exponential Smoothing State Space (ETS). So, 

according to the results, the ARIMA model can be used to forecast monthly rainfall 

data in the future. 
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Additionally, a study has been done to forecast the rainfall data by using a time series 

model. Monthly rainfall data of the Bandung city was used well over two years 

between 2011 and 2013. Sidiq (2018) has used Box and Jenkin’s procedures and 

concluded that the ARIMA model is the most successful and useful model for rainfall 

predictions for the upcoming years (Sidiq, 2018). 

Maina et al. (2019) have carried out a time series analysis modeling of rainfall values 

in Nakuru Kenya. The monthly rainfall data between the years 1997 and 2016 were 

obtained and processed to find the best-fitted model for it. As a methodology, 

univariate Box and Jenkin’s models were used and found that SARIMA (0, 0, 1) (0, 

1, 1)12 model is the most proper one because of the seasonal patterns in the rainfall 

data of Nakuru County.  

A study by Ampaw et al. (2020) used monthly rainfall data of the New Juaben 

Municipality in Ghana between 1993 and 2011 to develop an ARIMA model that 

helps to predict rainfall distributions and variabilities. By using Box-Jenkins 

methodology, it was decided that the SARIMA model that best describes the New 

Juaben Municipality rainfall is SARIMA (0, 0, 0) (2, 1, 1)12 model. 

Papalaskaris (2020) studied forecasting monthly rainfall data of Karyes in Greece 

from 1982 to 2018 by using the ARIMA method. SARIMA (0, 0, 0) (0, 1, 1)12 model 

was finally selected as the best representation among several candidate models for 

the short-term rainfall forecasting and long-term rainfall predictions by modeling 

historical values of the region. 
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2.4 Model Selection Criteria 

In the literature, there are several criteria for model selection by comparing models 

such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 

and Schwartz-Bayesian Criterion (SBC). The most fitted model for the time series 

data can be selected by means of comparing these statistics. The model which has 

the lowest AIC, BIC, or SBC value is the optimal model for the data (Babazadeh and 

Shamsnia, 2014). Various publications in the literature show that AIC and BIC are 

the most used model selection methods. For example, only AIC (Pazvakawambwa 

& Ogunmokun (2013), Etuk & Mohamed (2014), Mohamed & Ibrahim (2013), Sidiq 

(2018)) or BIC (Ampaw et al.(2020), Papalaskaris (2020)) were used in many studies 

to choose the optimal model. However, both AIC and BIC were used at the same 

time in some studies (Babazadeh & Shamsnia (2014), Papalaskaris et al. (2016), 

Maina et al. (2019)). 

2.5 Clustering Analysis 

Clustering analysis is a multivariate method that aims to classify samples based on 

their similar characteristics and find subgroups of the variables that are highly 

correlated to allow them to describe subgroups by conserving important information 

(Yudistira et al., n.d.). Cluster analysis helps to obtain beneficial information and 

results from complicated data. A data set can be divided into many subsets. If the 

objects belong to the same group, it means that they have a high-level similarity 

comparing with the objects in other subsets. There are several clustering methods 
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such as hierarchical, partitioning, grid-based, model-based, feature-based, fuzzy, and 

density-based clustering. Hierarchical clustering is the most common method and it 

includes different distance measures which are single, complete centroid, average, 

median linkages, and Ward’s minimum variance (Bu et al., 2020). In several studies 

related to hydrology in the literature, clustering analysis was applied commonly for 

multivariate analysis. 

For example, Kajewska-Szkudlarek (2020) has studied time series prediction for 

rainfall data of Wroclaw-Swojec station in Poland between the years 2000 and 2018. 

In this study, hierarchical Ward and divisive k-means methods were used and several 

cluster numbers were tried from two to 20. As a result, subdividing into eight were 

found suitable. 

Also, Teodoro et al. (2016) have conducted a cluster analysis for the monthly rainfall 

data of 32 stations of  Mato Grosso do Sul in Brazil from 1954 to 2013. The authors 

have used Ward’s agglomerative hierarchical clustering method and Euclidean 

dissimilarity metric to classify the data. They created five groups for the purpose of 

climate forecasts and meteorological researches.  

There is another study that focused on reconsidering the climate regions by using the 

clustering approach in Turkey. The period of the time series of temperatures and total 

precipitation ranges from 1951 to 1998. Five different clustering methods were tried 

that are single and complete linkage, average distance within and between clusters, 

and Ward’s technique. As a dissimilarity measure, Euclidean distance was used. As 

a result, it is found that the most appropriate clustering method is Ward’s method 
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because it created consistent clusters and reasonable results. In short, they have 

preferred to subdivide the data into seven main groups by using the selected 

procedures (Unal et al., 2003). 

Additionally, Hussain and Lee (2009) have carried out a clustering analysis for the 

rainfall data of Pakistan (32 stations) between 1980 and 2006 to classify the rainfall 

regions. They have applied one of the hierarchical clustering techniques which is 

Ward’s method and rainfall stations in Pakistan were clustered as 6 identical groups. 

For instance, Yashwant & Sananse (2015) have compared different clustering 

techniques for the monthly rainfall data of 36 stations of the Marathwada region in 

India from 1975 to 2014. In this study, correlation coefficient distance was used in 

order to divide the study area into clusters by using seven hierarchical clustering 

methods such as Ward, complete, average, single, median, centroid, and McQuitty 

linkages. They have aimed to classify data into six clusters and found that single and 

centroid linkages are the most suitable techniques for clustering analysis for this 

region. 

Another cluster analysis has been done by Ahmad et al. (2013) for the annual rainfall 

data of 59 stations of Peninsular Malaysia between the years 1975 and 2010. For this 

investigation, seven linkages and 11 similarity measures were used to test 77 

combinations to find the best combination for the classification. As a result, it is 

finally found that the most appropriate combination is the complete linkage-

correlation similarity measure for this rainfall data of this area. 
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Lastly, a cluster analysis has been performed for the rainfall data of Jember Regency 

to model the time series by using spatial correlations. Data for 77 stations spread 

over the region from 2005 to 2015 has been used in this study. The authors have 

applied one of the nonhierarchical methods – K-means and Euclidean distance for 

clustering. Based on the analysis, dividing into 4 and 6 groups were tried and 

clustering by 6 subsets is found the fittest for the forecasting analysis (Yudistira et 

al., n.d.). 

2.6 Disaggregation Approach 

Disaggregation is a method that can help to disaggregate the higher-level time series 

(key series) into lower levels (monthly, quarterly, weekly, daily, or hourly) by 

preserving the historical statistics such as standard deviation, mean, correlation 

coefficients, etc. at higher-level and lower levels. There are two main types of 

disaggregation which are temporal and spatial.  

While spatial (in space)  disaggregation aims to disaggregate the data into subzones 

spatially, temporal (in time)  disaggregation aims to disaggregate the data with low 

frequency into high-frequency data (Salas et al., 1988).  

There is a case study for time series rainfall modeling in Saudi Arabia. The monthly 

rainfall data of Surat Obeida station was used for the period of 1981 to 2010. The 

author has applied the seasonal ARMA and temporal disaggregation models to find 

the best representative model for the data. It was finally found that the disaggregation 
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model had more reasonable results than the PARMA model because PARMA 

models do not capture the annual structure of the data (Saada, 2014). 

Hanaish (2016) has conducted a multivariate rainfall disaggregation analysis by 

using hourly rainfall data of seven stations in Malaysia from 1973 to 2008. In this 

study, a multivariate disaggregation rainfall model (MUDRAIN) was used and it was 

found that this model does not work on reproducing statistics well for this study area.  

Park & Chung (2020) have studied on disaggregation of daily rainfall to hourly data 

by using a proposed K-nearest neighbor-based time resampling method (KNNR). 

Hourly rainfall data of four stations in Korea was used for the period of 1961 and 

2017. As a result, the modified disaggregation method gave more successful 

outcomes with 3-day rainfall trends because statistical features and boundary 

continuity are protected better than without considering 3-day patterns. Therefore, 

the authors have concluded that disaggregated hourly data can be used for further 

hydrologic analyses. 

Srikanthan et al. (2004) have a study about monthly rainfall data generation by using 

rainfall values of 10 stations in Australia. In this article, a nonparametric model and 

method of fragments were used to generate rainfall monthly rainfall scenarios by 

using historical records and disaggregate the annual to monthly rainfall data, 

respectively. Results indicate that the statistical properties at annual and monthly 

levels were preserved for both models at the same time. However, the nonparametric 

model is superior to the method of fragments which is one of the temporal 

disaggregation methods. 
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Poschlod et al. (2018) have carried out a study to compare the Method of Fragments 

(MoF) and Weather Research and Forecasting (WRF) Model on the daily rainfall 

data of 10 stations in Oslo, Norway for the period from 2000 to 2017. It is concluded 

that although the WRF model has also some advantages, the performance of MoF is 

more suitable. 

A study by Güntner et al. (2001) aimed to disaggregate daily rainfall data into hourly 

time series values. In this study, the performance and parameters of the temporal 

disaggregation method were compared by using rainfall data of three stations in 

Brazil and three stations in the United Kingdom for different periods. As a result, it 

was found that the model has regenerated highly accurate rainfall values for both 

countries which have different climates. However, the temporal disaggregation 

model has performed better in Brazil which has a semi-arid tropical climate. 

Wey (2006) has completed a study that focuses on converting daily precipitation data 

to hourly data by using a temporal disaggregation approach. In this study, historical 

precipitation records from 15 daily and 28 hourly stations in Ontario, Canada for the 

period from 1961 to 1990 were chosen to use. The method of fragments was applied 

to produce hourly data by disaggregating the daily precipitation data. As a result, the 

method of fragments was determined as a suitable approach for the precipitation time 

series data at a daily timescale. 

In another research, precipitation and evaporation data of two weather observation 

stations in Australia were used. The period of monthly and annual data used was 

covered the period from 1950 to 2009. In this study, there were two approaches for 
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downscaling models. Firstly, a single model was used to downscale annual total 

values of precipitation and evaporation. Then, the annual products were 

disaggregated into monthly values by using four different method of fragments 

approaches. However, secondly, for precipitation and evaporation, a model was 

created for each month separately. The aim of this study was to achieve a result that 

supports that the first approach provides better monthly statistics than the second 

approach. It was concluded results and hypothesis of this paper are consistent 

(Sachindra & Perera, 2018).  

Ismail et al. (2004) have done a synthetic simulation by using several different 

disaggregation models. The streamflow and rainfall time series data of Sungai Muar 

River in Malaysia for 26 years and 59 years were used, respectively. In this study, 

four possible disaggregation models such as Valencia-Schaake (VLSH) model, 

Mejia-Rouselle Model (MJRS), Lane model, and Synthetic Streamflow Generation 

Software Package (SPIGOT) were applied and their performances were compared. 

It was found that all models are successful in preserving the historical statistical 

properties of both series except the coefficient of skewness. According to the 

findings of the study, the VLSH model is the most suitable and successful 

disaggregation approach because its statistics are very close to the historical ones of 

both streamflow and rainfall data. 

Additionally, a study by Al-Zakar et al. (2017) focused on disaggregating annual 

streamflow data into monthly time scales. The streamflow data of Salur (duration: 

1964-1996), Cadirhoyuk (duration: 1981-2000), and Yahsihan (duration: 1939-
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2000) stations along the Kızılırmak river, Turkey were used. The authors applied the 

K-nearest neighbor (KNN) model that is one of the nonparametric disaggregation 

techniques. To make a comparison, it was performed in both spatial and temporal 

disaggregation methods. Results have indicated that KNN is an efficient model and 

spatial approach is superior to temporal and it can be used in further hydrological 

analyses for better results. 

2.7 Drought Frequency Analysis 

Drought frequency analysis is one of the common and important applications in 

hydrology. Evaluating the frequency and probability of extreme events is very 

crucial for water resource management because policies, guidelines, and risk 

acceptance capacities can be designed by means of those evaluations. Homogeneity 

and independence (no serial correlation) of the hydrological data are necessary for 

frequency analysis (Tallaksen, 2000). Many studies on drought frequency analyses 

of different hydrological variables (precipitation, streamflow, etc.) are available in 

the literature. 

For example, Mirakbari et al. (2010) have proposed a regional bivariate frequency 

analysis for meteorological droughts. Monthly precipitation data of 43 stations in 

Khuzestan, Iran were used for the period from 1960 to 2007. In this study, six 

homogeneous groups were created by analyzing the drought severity and durations 

using L-moments. The authors have concluded that drought risks and optimization 
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of the water resource use can be evaluated thanks to the bivariate modeling of the 

characteristics of the drought events. 

Also, Rasmussen & Akintuǧ (2004) have used 57 years of annual runoff data of 

Saskatchewan River in Manitoba in order to compare the suitability of the AR(1), 

ARMA (1,1), and Hidden State Markov (HSM) models for hydrologic drought 

frequency analysis. As a result, the superiority of any model was not certain but HSM 

models generate more low flow drought events than the other models and more 

realistic synthetic flows. 

Additionally, a hydrological drought frequency analysis was conducted for the 

average daily streamflow data of the Yom River in Thailand from 1998 to 2012. In 

this study, eight gauging stations along the river were selected and severities of 

streamflow droughts were found by using drought frequency analysis. A threshold 

value was determined and the amount of flow that is below this threshold level was 

characterized as a drought event. Results have indicated that more severe droughts 

were seen toward the downstream parts of the Yom River (Sawatpru & Konyai, 

2016). 

Another study conducted by Karimi et al. (2019) aimed to extract the dry periods of 

seven meteorological stations in the Karkheh River basin in Iran by using the 

Standard Precipitation Index (SPI). In this study, monthly precipitation data were 

used between 1987 and 2014. In order to forecast SPI time series, ARIMA models 

were applied. According to the results, the years that had the most severe drought 

were 1996 and 1998 in Dehno station. 
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Also,  a drought frequency analysis was completed by Moon et al. (2010)  in order 

to find the return period of the drought event by using the Palmer Drought Severity 

Index. The precipitation and temperature data of the 4 stations of Korea were used. 

As a result, the authors have concluded that extreme droughts may repeat in the 5 -

10 years range on the average in Korea.
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CHAPTER 3  

3 STUDY AREA AND DATA 

Cyprus which is the third biggest island in the Mediterranean Sea is located in the 

south of Turkey. The area of Cyprus Island is 9.251 km2 but North Cyprus has a 

surface area of 3.355 km2. The country has a semi-arid climate and 136 m altitude. 

In North Cyprus, stations extend to Güzelyurt (in the west) starting from the Karpaz 

(in the northeast). Summers are very hot and winters are mild and rainy intensively 

because of the Mediterranean subtropical climate. Most of the rainfall has been 

recorded in the winter season (December, January, and February) while July and 

August are months that have the lowest amount (almost zero) of rainfall in a year. 

This study covers 33 observation stations in North Cyprus. Locations of 33 stations 

can be seen in Figure 3.1.  Annual and monthly precipitation data sets spanning from 

1975 to 2014 were obtained from the Meteorological Office of the Turkish Republic 

of Northern Cyprus (TRNC). Precipitation includes snowfall, rainfall, sleet, and hail. 

However, almost no snowfall is observed because there are not many areas that have 

high elevation and high mountains in North Cyprus. The geographical characteristics 

(elevation, latitude, and longitude) of each station are available in Table 3.1.  
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Table 3.1 Geographical characteristics of 33 selected rainfall stations throughout 

Northern Cyprus 

Station 

Number 
Station Name Elevation(m) Latitude(°) Longitude (°) 

1 Akdeniz 89 35.29972 32.96500 

2 Camlibel 277 35.31611 33.07056 

3 Lapta 168 35.33575 33.16336 

4 Girne 10 35.34194 33.33139 

5 Beylerbeyi 225 35.29729 33.35404 

6 Bogaz 300 35.28825 33.28484 

7 Tatlisu 168 35.22470 33.45060 

8 Kantara 480 35.40056 33.91361 

9 Esentepe 183 35.33273 33.57852 

10 Guzelyurt 52 35.18889 32.98194 

11 Gaziveren 19 35.17306 32.92194 

12 Lefke 129 35.09664 32.84091 

13 Yesilirmak 20 35.16639 32.73694 

14 Ercan 119 35.15917 33.50194 

15 Serdarli 111 35.25183 33.61024 

16 Degirmenlik 168 35.25276 33.47218 

17 Gecitkale 45 35.23333 33.72861 

18 Gonendere 75 35.26983 33.65660 

19 Vadili 54 35.13869 33.65161 

20 Beyarmudu 87 35.04716 33.69582 

21 Cayirova 67 35.34949 34.03129 

22 Iskele 39 35.28611 33.88444 

23 Mehmetcik 99 35.42222 34.07833 

24 Gazimagusa 10 35.13639 33.93556 

25 Salamis 6 35.18080 33.89734 

26 Alevkaya 623 35.28583 33.53472 

27 Zumrutkoy 129 35.17444 33.04917 

28 Alaykoy 166 35.18472 33.25667 

29 Lefkosa 134 35.19639 33.35194 

30 Ziyamet 82 35.4535 34.12451 

31 Dipkarpaz 136 35.59889 34.37917 

32 Yenierenkoy 123 35.53556 34.18944 

33 Dortyol 54 35.17889 33.75861 
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CHAPTER 4  

4 METHODOLOGY 

The study aims to model rainfall characteristics of North Cyprus using ARIMA 

models and find the return period of the most critical drought by generating longer 

synthetic data. This chapter represents methods of precondition checks for ARIMA 

modeling procedure, clustering methods, Box and Jenkin’s methodology, types of 

ARIMA models, disaggregation method, and drought frequency analysis methods. 

4.1 Transformation for Normalization  

In statistics, many analysis techniques assume that the distributions of variables are 

normal. However, hydrological time series are generally not normally distributed. 

According to Salas et al. (1988), there are main approaches to cope with skewed 

hydrological data.  

1. Transforming these non-normal series into normal before modeling and 

analyzing the time series;  

2. To cope with skewness by means of the probability distribution of residuals 

that are uncorrelated after modeling non-normal time series  
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3. Finding the link between the first two moments of the observed data and 

normalized data to preserve the characteristics of the observed data 

moments. 

In comparison to the second and third approaches, transforming the skewed data into 

normal is simpler but using this may create biases in the statistical parameters of the 

generated series. Salas et al. (1988) mentioned that if biases are small, the first 

approach can be used. In this paper, the first approach was preferred. There are some 

frequently-used methods to transform the skewed data into normal and they were 

explained under three subtitles below. 

4.1.1 2-parameter Lognormal transformation 

The 2-parameter lognormal transformation is one of the most common 

transformations for many statistical analyses.  This type of transformation is applied 

by replacing each variable in the data with log( 𝑥𝑡). Log transformation decreases 

the importance of outliers and provides a normal distribution for a strong analysis 

(Metcalf & Casey, 2016).  

𝑦𝑡 = log( 𝑥𝑡) 

(4.1) 

 

where n: the length of observed data, t = 1, 2, …, n, 𝑥𝑡 : observed values, 𝑦𝑡: 

transformed values. 
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4.1.2 3-parameter Lognormal Transformation 

The 3-parameter lognormal distribution is often used for hydrological data. Sangal 

and Biswas (1970) mentioned that a logarithmic transformation of the reduced flow 

(𝑥𝑡 −  α)at time step t, i.e. 

𝑦𝑡  =  log (𝑥𝑡 −  α) (4.2) 

 

then normally distributed observation 𝑦𝑡   is produced. The variable 𝑥𝑡 represents 

observed values in the data, α is a parameter, and (𝑥𝑡 −  α) is the reduced variable. 

The equation of the parameter α in terms of the statistical measures of 𝑥𝑡 is, 

α = 𝑀𝑥 −  
𝜎𝑥

2

2(𝜇𝑥 − 𝑀𝑥)
 

 

(4.3) 

where 𝑀𝑥 is the median of 𝑥𝑡, 𝜎𝑥 is the standard deviation of the variable 𝑥𝑡 and 𝜇𝑥 

is the mean of 𝑥𝑡. 

The authors also stated that there is a dimensionless form of the equation of α because 

the value of α cannot be a real number. In this case, the dimensionless form can be 

used to determine the parameter α in regional studies. Equation of it is, 

α = β −  
𝛾2

2(1 − β)
 

(4.4) 
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where 𝛽 =  𝑀𝑥/𝜇𝑥  and 𝛾 =   𝜎𝑥/𝜇𝑥. Parameter α can be negative, zero, and 

positive (Sangal & Biswas, 1970).  

4.1.3 Box-Cox Transformation 

Box-Cox transformation is a frequently-used method to normalize skewed data. It is 

applied such that 

𝑦𝑡 = { 

log(𝑥𝑡)     𝜆 = 0
 

 
𝑥𝑡

𝜆 − 1

𝜆
   𝜆 ≠ 0

   , 𝑡 = 1,2, . . .  , 𝑛 

 

(4.5) 

 

where λ represents the transformation parameter which is decided to make sure that 

the data (𝑦𝑡) are approximately normally distributed (Thyer et al., 2002) and it is 

estimated by using the maximum likelihood model (Xu et al., 2019).  

4.1.4 Transformation Type Selection 

In order to select the most appropriate transformation method, the Filliben 

probability plot correlation coefficient test is conducted. This test gives the near-

linear normal probability plots by measuring the correlation between the transformed 

(ordered) observations (𝑦𝑖) and their medians Mi (Filliben, 1975). Filliben 

probability plot correlation coefficient can be calculated as 
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�̂� =  
∑(𝑥𝑖 −  �̅�) (𝑀𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2  ∑(𝑀𝑖 − �̅�)2
 

 

(4.6) 

The transformation method with the highest r value which is close to 1 should be 

selected among the candidate methods.  

4.2 Stationarity 

Stationarity is one of the most fundamental assumptions for many statistical analyses 

of hydrological data in water resources. Stationarity means that statistical parameters 

such as mean, variance, and covariance do not fluctuate with the change in time. In 

other words, although different statistical properties are calculated from different 

time series, they will be distributed around the same mean. It implies that there 

cannot be any trend or seasonality, or combination of the two in a stationary time 

series (Machiwal & Jha, 2006).  

Stationarity is an important assumption in time series analyses because constancy in 

the mean, variance, and covariance is necessary in order to estimate parameters and 

create the best model which represents the data precisely (Metes, 2005).  

Metes (2005) also stated that stationarity can be detected by several methods such as 

visual tests, correlogram tests, unit root tests, and stationarity tests. After checking 

whether there is a trend in the data or not visually, verifying stationarity or non-

stationarity by using unit root tests is a guaranteed application. If data is non-

stationary, it needs to be rendered stationary data for a strong time series analysis. 
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There are some methods to transform non-stationary data into stationary. The most 

common methods are differencing and logarithmic transformation (Cromwell et al., 

2011).  

4.2.1 Visual check 

In this method, the annual rainfall totals can be plotted and screened roughly to check 

whether the data have any trend or interruption in mean, autocorrelation, variance, 

and seasonality. If the plot has a certain upward slope, vertical changes in series, or 

fluctuations in autocorrelation, it can be concluded that the time series is non-

stationary. Additionally, non-stationarity can be detected by means of 

autocorrelation and partial autocorrelation plots. In the non-stationary series, ACF 

dies out very slowly while it declines and decays fast to zero in stationary series 

(Metes, 2005). 

4.2.2 Augmented Dickey-Fuller (ADF) Test 

ADF test procedure checks whether the variable has a unit root or not. If there is a 

unit root, it indicates that the time series is non-stationary. The ADF test uses the 

equation below: 

𝑦𝑡 = 𝑑 +  ∅ ∗ 𝑦𝑡−1 +  𝛿𝑡 + 휁1 Δ𝑡−1 + 휁2 Δ𝑡−2 + ⋯ + 휁𝑘  Δ𝑡−𝑘

+  휀 𝑡 

 

   (4.7) 
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where k, d, δ, ∅, 휀 𝑡 represent the number of lags, intercept constant called a drift, 

coefficient on a time trend, the coefficient that represents process root, residual term 

respectively (Rutkowska & Ptak, 2012). 

The null and alternative hypotheses of the ADF test are formulated as: 

H0: ∅ = 0 (non − stationary) (4.8) 

HA: ∅ < 0 (stationary) 

 

(4.9) 

If the p-value for yt is lower than 0.05 (95 % confidence level is the default for the 

ADF test in MATLAB (Mathworks Inc., 2021a), the null hypothesis can be rejected 

and it can be concluded that the variable is stationary. Otherwise (p-value > 0.05), 

the null cannot be rejected and the variable is non-stationary, i.e. it has a unit root 

(Mathworks Inc., 2021a). 

According to Rutkowska & Ptak (2012), choosing the most appropriate lag length 

(k) for the ADF test is also an important process. A large number of lags leads to a 

decrease in the performance of the ADF test. If the number of lags is small, error 

correlations influence the test. There are some suggested formulas and methods to 

decide the maximum lags by Schwert (1989) but they gave a high number of lags as 

a result, so finding the optimal number of lags by increasing it one by one was 

decided as a more reliable method than formulas.  Once the lag number that leads to 

starting to ruin stationarity of the time series can be detected by means of this 

method, it can be stopped there and the last lag that satisfies the stationarity condition 

can be selected as the maximum lag number for the ADF test. 
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4.2.3 Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test 

KPSS test is a stationarity test and it uses long-term variance in order to assess 

whether the time series has stationarity around mean or variance or it is non-

stationary because of a unit root (Kwiatkowski et al., 1992). The structural model of 

the test is, 

yt = δt + rt + εt 

 

(4.10) 

rt = rt−1 + ut , ut ~ N (0, σ2
ε) 

 

(4.11) 

The null and alternative hypotheses of the KPSS test are, 

H0: σε
2 = 0 (stationary) (4.12) 

HA: σε
2 > 0 (non − stationary) 

 

(4.13) 

 

where δ is the coefficient on a time trend, rt is a random walk, εt is a stationary error 

and σ2
ε is variance term. 

Also, determining the optimal number of lags is important for the KPSS test. 

According to Kwiatkowski et al. (1992), there are two methods for it such as 

assessing the performance of results by starting with the small values and then 

increasing the number of lags and using (T)1/2 formula in which T is the size of the 
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sample. In this study, the optimal lag number was decided by increasing the lag 

number one by one starting with the small values. 

As a result, if the t-statistics are in the non-rejection region, the series is stationary. 

The rejection region was bounded by the critical values for 95 % confidence intervals 

that are automatically calculated by the software (95 % is the default in MATLAB 

for the KPSS test (Mathworks Inc., 2021a). 

4.3 Clustering 

Clustering analysis is an important method to create homogenous groups from the 

observations based on their similarity. Among several clustering algorithms, the 

hierarchical clustering technique -one of the most common techniques in the 

literature- was used in this study. There are 2 types of hierarchical clustering which 

are agglomerative and divisive depending on their strategies. Agglomerative 

clustering starts with accepting each observation as a cluster, then collect them in the 

larger parent clusters by finding the closest pair of clusters (Liu et al., 2013). There 

are seven different hierarchical clustering methods (see Table C.1) and 11 similarity 

measures (see Table C.2). Both of these tables were directly taken from the User's 

Guide of the Statistics and Machine Learning Toolbox MATLAB (Mathworks Inc, 

2021b). The most used combinations were selected from the papers in the literature 

and checked their suitability for the data.  

In this study, complete-correlation combination was used. Complete linkage was 

applied because it can prevent the chaining problem which occurs in other techniques 
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and the distribution of the stations for clusters is more equal in this linkage (Unal et 

al., 2003). As a distance metric, the correlation was used because the statistical 

method that was used in this study, ARIMA, aims to decide the most suitable model 

for the time series by modeling correlations in the data (Yusheng, 2009). Also, 

several validity indexes can be performed to decide the optimal number of the cluster 

such as Calinski-Harabsz, C Index, Krzanowski-Lai Index, and Hartigan Index 

(Ahmad et al., 2013). However, this study did not use an index because the number 

of stations is not very large, so the most optimal cluster number can be decided 

visually. The different number of clusters can be checked for all candidate 

combinations and the optimal number can be obtained approximately. 

4.3.1 Complete Linkage 

This hierarchical method uses the distance between the furthest members of two 

clusters as the distance between these two clusters (Bu et al., 2020). 

The longest distance between cluster K and cluster L can be calculated as: 

𝐷(𝐾, 𝐿) = max{𝑑𝑖𝑗|𝑖 ∈ 𝐾, 𝑗 ∈ 𝐿  } (4.14) 

where 𝑑𝑖𝑗 is the distance between xi (i-th member of cluster K) and xj (j-th member 

of cluster L).  

After a new cluster, M was created from K and L, the distance between M and 

another cluster (N) is calculated by means of the same technique, 
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𝐷(𝑀, 𝑁) = max{𝑑𝑖𝑗|𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁  } 

 

(4.15) 

=  max{max {𝑑𝑖𝑗|𝑖 ∈ 𝐾, 𝑗 ∈ 𝑀, max{𝑑𝑖𝑗|𝑖 ∈ 𝐿, 𝑗 ∈ 𝑀}}  (4.16) 

 

=  𝑚𝑎𝑥{𝐷(𝐾, 𝑀), 𝐷(𝐿, 𝑀)} 

 

(4.17) 

 

As a similarity measure, the correlation distance metric was used.  

Let be X is a (m x n) matrix and includes row vectors (𝑥1, 𝑥2, …, 𝑥𝑚). The several 

distances between the vector 𝑥𝑠 and 𝑥𝑡  , i.e. 𝑑𝑠𝑡 can be calculated as: 

 

𝑑𝑠𝑡 = 1 −
(𝑥𝑠 − 𝑥�̅�)(𝑥𝑡 − 𝑥�̅�)′

√(𝑥𝑠 − 𝑥�̅�)(𝑥𝑠 − 𝑥�̅�)′√(𝑥𝑡 − 𝑥�̅�)(𝑥𝑡 − 𝑥�̅�)′
   (4.18) 

 

4.4 The modeling procedures 

Box and Jenkins developed a systematic method for time series modeling of 

primarily financial time series but their methodology and models are the most widely 

used procedures in hydrological applications (Soltani et al., 2009). This approach 

includes three main stages which are model identification and selection, model 
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estimation, and diagnostic checking. In this study, these procedures were used to find 

the best-fitted model for the data. 

 

Figure 4.1 Flow chart of Box and Jenkins methodology (Box, G. E. P., Jenkins, G. 

M., & Reinsel, 2005) 

4.4.1 Model identification and selection 

After confirming normality, stationarity, and homogeneity preconditions, in this 

step, orders of the ARIMA model can be determined by evaluating autocorrelation 

(ACF) and partial autocorrelation function (PACF) plots in order to specify some 

potential models for the data. Then, model selection can be implemented among 

candidate models by means of AIC and BIC. Formulas of them can be seen below; 
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𝐴𝐼𝐶𝑝,𝑞 =  
−2 ln  (𝜎𝑎

2) + 2𝑟

𝑛
   (4.19) 

 

𝐵𝐼𝐶𝑝,𝑞 = ln  (𝜎𝑎
2) +  𝑟

ln (𝑛)

𝑛
   (4.20) 

 

where r, ln (𝜎𝑎
2) and n represents the number of estimated parameters, the maximum 

likelihood estimate, and sample size, respectively. The model which has the 

minimum AIC or BIC value for the information criterion is selected as the most 

appropriate model among potential models  (Box, G. E. P., Jenkins, G. M., & 

Reinsel, 2016). 

4.4.2 Model Estimation 

In this stage, the parameters of the best-fitted model are estimated with the help of 

some methods like the method of moments, maximum likelihood, and least-squares 

(Box, G. E. P., Jenkins, G. M., & Reinsel, 2016). 

4.4.3 Diagnostic Checking 

After the model selection and estimation, validation is necessary. Diagnostic 

checking can be applied by looking at the residuals. They need to have a normal 

distribution (~ N (mean = 0, constant standard deviation), minimum variance, and 

noncorrelation to be valid for the data. These necessities can be checked by using 
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ACF and PACF plots. If the residuals are independent and identically distributed 

with zero mean (i.e. follow Gaussian white noise) and if there is no autocorrelation 

between any of the groups in the time series, it can be concluded that the model fits 

the data well. After diagnostic checking confirms the adequacy of the model, it can 

be used for forecasting and synthetic data generation. (Maina et al., 2019). 

4.4.4 Autoregressive (AR) Modeling 

Autoregressive models are the models that are frequently used in water resources 

and hydrology. The first reason for applying these models is that there is a 

dependence between the present time values and previous time values. The second 

reason is that applying these models is easy. Autoregressive models assume that the 

data is normally distributed. If the data is non-normal, they need to be transformed. 

After an appropriate transformation, the transformed data 𝑦𝑡 can be used for 

modeling (Salas et al.,1988). The AR model of order p can be generally written as 

 

𝑦𝑡 = 𝜇𝑦 +  ∅1 ∗ (𝑦𝑡−1 − 𝜇𝑦) +  ∅2 ∗ ( 𝑦𝑡−2 − 𝜇𝑦) +  … + ∅𝑝

∗  (𝑦𝑡−𝑝 − 𝜇𝑦) +  휀 𝑡 

 

(4.21) 

 

where μy, σ
2

y
  , σ2

ε and ∅p   represents the mean, variance of 𝑦𝑡, variance of 휀 𝑡 , and 

autoregression correlation coefficient, respectively. 

𝐸[𝑦𝑡] = 𝜇𝑦 (4.22) 



 

 

 

43 

 

𝐸[휀𝑡] = 0 

 

(4.23) 

𝑉𝑎𝑟[𝑦𝑡] =  𝜎𝑦
2 

 

(4.24) 

𝑉𝑎𝑟[휀𝑡] =  𝜎𝜀
2 

 

(4.25) 

 

𝜇𝑦 =  �̅� =
1

𝑇
 ∑ 𝑦𝑡

𝑇

𝑡=1

 

 

(4.26) 

𝜎𝑦
2 =  

1

𝑇 − 1
 ∑(𝑦𝑡 − �̅�)2

𝑇

𝑡=1

 

 

(4.27) 

𝜎𝜀
2 =  𝜎𝑦

2 (1 − ∑ ∅𝑗 𝜌𝑗

𝑝

𝑗=1

) 

 

(4.28) 

 

The 𝜌𝑘 represents the lag-k autocorrelation coefficient of 𝑦𝑡, so the autocorrelation 

function for AR(p) can be written as 

𝜌0 = 1 (4.29) 
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𝜌𝑘 =  ∅1𝜌𝑘−1+ .  .  . + ∅𝑝𝜌𝑘−𝑝 , 𝑘 ≥ 1  

 

(4.30) 

𝜌𝑘 =  ∅1
𝑘, 𝑘 ≥ 0 

 

(4.31) 

The autoregression coefficients ∅1, ∅2, … ∅𝑝 can be estimated by using equation 

4.32 where the correlation coefficients of population (𝜌𝑗) and autoregression 

correlation coefficients (∅𝑗) are replaced by autocorrelation coefficients of the 

sample (rj) and estimates ∅̂j, respectively. So, 

𝑟𝑘 =  ∅̂1𝑟𝑘−1 + ∅̂2𝑟𝑘−2 .  .  . + ∅̂𝑝𝑟𝑘−𝑝, 𝑘 ≥ 0 

 

(4.32) 

4.4.5 Annual ARMA Models 

These models are a combination of autoregressive and moving average models.  

The ARMA model of order p, q: 

𝑦𝑡 = 𝜇𝑦 + 𝜙1 ∗ (𝑦𝑡−1 − 𝜇𝑦) +  … + 𝜙𝑝 ∗  (𝑦𝑡−𝑝−𝜇𝑦) +  휀 𝑡

+  𝜃1 ∗ 휀 𝑡−1 +  … +  𝜃𝑞 ∗ 휀 𝑡−𝑞  

(4.33) 

with p autoregressive parameters 𝜙1, …,  𝜙𝑝, and q moving average parameters 

𝜃1, … , 𝜃𝑞.  
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The �̂�𝑦
2 represents the variance and 𝜌1 represents the autocorrelation at lag-1 for 

ARMA (1, 1) and they can be calculated as 

�̂�𝑦
2 =

1 − 2𝜙1𝜃1 + 𝜃1
2

1 − 𝜙1
2 𝜎𝜀

2 
(4.34) 

 
 

𝜌1 =
(1 − 𝜙1𝜃1)(𝜙1 − 𝜃1)

1 − 2𝜙1𝜃1 + 𝜃1
2  

(4.35) 

Also, the autocorrelation function  is given as 

 

 

𝜌𝑘 =  ∅1𝜌𝑘−1 =  𝜌1∅1
𝑘−1     𝑘 > 1 

(4.36) 

Estimators of the moments for ARMA (1, 1) 

 

 

𝜇𝑦 =  �̅� 
(4.37) 

 

 

 

𝜎𝜀
2̂ =

𝜎𝑦
2 (1−𝜙1̂

2
)

1−2𝜙1̂𝜃1̂+𝜃1̂
2  (4.38) 

 

 

 

𝜙1̂ =
𝑟2

𝑟1
 (4.39) 
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𝜃1̂ =
−𝑏 + √(𝑏)2 − 4(𝑟1 − 𝜙1̂)2

2(𝑟1 − 𝜙1̂)
 

(4.40) 

 

 

 

𝑏 = 1 − 2𝜙1̂𝑟1 + 𝜙1̂
2
 (4.41) 

 

where 𝜇𝑦 : sample mean, 𝜎𝜀
2 : variance, 𝜎𝜀

2̂ : estimator of the variance of 휀 𝑡 , 𝜙1̂ : the 

estimator of the autoregression correlation coefficient, 𝜙1̂: the estimator of moving 

average correlation coefficient, 𝑟1: autocorrelation coefficient at lag 1, 𝑟2 : 

autocorrelation coefficient at lag 2. 

4.4.6 The ARIMA Models 

In hydrology, ARMA models are usually fitted to stationary hydrologic series, such 

as annual series. For non-stationary series such as monthly and weekly series, the 

non-stationarity was removed by the periodic standardization. However, the required 

number of parameters is usually large. An alternative way to transform data into a 

stationary series with fewer parameters is possible by taking the differences of the 

data. It is possible to take the first, second, or in general, the dth difference, which 

leads to non-periodic, stationary ARIMA (p,d,q) models. 
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4.4.7 Synthetic Data Generation 

Results of the long time series analysis are more reliable than the short ones but many 

historical records for hydrologic variables (rainfall, streamflow, etc.) are generally 

not too long. Naturally, short records include a similar and limited number of 

realizations but records with long periods may provide different and various 

scenarios. Historical records can be extended using synthetic data generation 

techniques (Mirakbari et al., 2010). In this study, the “simulate” function of 

MATLAB (Mathworks Inc., 2021a) was used for this purpose. After parameters of 

the most fitted ARIMA model were estimated by means of the “estimate” package 

of MATLAB (Mathworks Inc., 2021a), the desired length of artificial data can be 

generated with the statistical properties that are close to the historical data. Then, this 

generated series can be used for further analyses. 

4.5 Parameter Uncertainty 

Since the stochastic model parameters are not known, they are generally estimated 

from the historical data. It is assumed that the parameters of the population are equal 

to the parameters of the sample. Sample parameters can be estimated by using the 

method of moments or the maximum likelihood method but hydrologic data are not 

generally too long, so parameter uncertainty needs to be taken into consideration to 

obtain more reliable and confident results (Akintuğ, 2006). In hydrology, parameter 

uncertainty has great importance because it may affect the predictions and decisions 

negatively (Van et al., 2008; Sudheer and Lakshmi, 2011). The distribution of each 
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parameter is found and a different random value of the parameter that comes from 

the distribution is used for each scenario in the synthetic data generation. Using 

random parameters instead of fixed parameters may help to overcome the parameter 

uncertainty problem. However, in this study, parameter uncertainty was not 

considered. 

4.6 Disaggregation Approach 

Disaggregation models are very popular techniques in hydrological modeling. There 

are two main types of disaggregation in the literature which are temporal and spatial.  

In this study, Valencia-Schaake (VLSH) model was used to disaggregate the 

synthetic data spatially. For example, in order to disaggregate the annual aggregated 

rainfall data (higher-level) into N annual regional rainfalls (lower-level), this 

approach can be used.  

The basic form of the single site temporal disaggregation model has been formulated 

by Valencia & Schakke (1973) as: 

  

𝑌 = 𝐴𝑋 + 𝐵휀 (4.42) 

 

This model was the first widely accepted model. In Equation 4.42, X is annual 

aggregated rainfall with zero mean, Y is zero mean annual regional rainfalls, A and 

B are the parameters and ε is the random variable with zero mean and constant 
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variance (Valencia & Schaake, 1973). A and B are the matrices of parameters that 

can be estimated by means of the method of moments after transforming the marginal 

distributions of all historical aggregated annual rainfalls and annual rainfalls of each 

region into normal.  

�̂� = 𝑆𝑌𝑋 𝑆𝑋𝑋
−1 (4.43) 

  

�̂��̂�′ =  𝑆𝑌𝑌 − 𝐴 𝑆𝑌𝑌 (4.44) 

  

where 

𝑋 = [𝑥1 … 𝑥𝑇],      𝑌 =  [
𝑦1

(1)
⋯ 𝑦𝑇

(1)

⋮ ⋱ ⋮

𝑦1
(𝑁)

⋯ 𝑦𝑇
(𝑁)

] (4.45) 

 

𝑆𝑈𝑉 is the sample covariance of the vectors U and V. Since their mean is zero, the 

sample covariance matrices can be calculated as  

  

𝑆𝑋𝑋 = (
1

𝑇
) 𝑋𝑋′ (4.46) 

  

𝑆𝑌𝑋 = (
1

𝑇
) 𝑌𝑋′ (4.47) 
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𝑆𝑌𝑌 = (
1

𝑇
) 𝑌𝑌′      (4.48) 

  

𝑆𝑋𝑌 =  𝑆𝑌𝑋
′  (4.49) 

 

The VLSH spatial disaggregation model preserves not only the correlation 

coefficients at lower levels but also correlations between lower levels and higher 

levels (Akintuğ, 2006). Most importantly, this model also has an additivity condition 

that means generated higher-level rainfalls can be obtained by adding generated 

lower-level rainfalls (Mujumdar & Kumar, 2012). In order to disaggregate the annual 

data into monthly series (temporal disaggregation), this method can also be used but 

it may create some disadvantages. For example, the correlation coefficient between 

the last month of any year and the first month of the next year cannot be preserved 

(Akintuğ, 2006). In order to solve this problem, another model was developed by 

Meija and Rouselle. Also, in Lane’s condensed model, in order to reduce the number 

of parameters for temporal disaggregation, unimportant correlations are ignored but 

this is not desirable for spatial disaggregation because correlation coefficients 

between the regions are important. In addition, it was found that the VLSH model 

was successful in preserving the historical annual statistics (Ismail et al., 2004). So, 

Valencia- Schaake spatial disaggregation method was preferred for this study. 
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4.7 Drought Frequency Analysis 

Before starting a drought frequency analysis, a drought definition is required. In the 

literature, there is no universally accepted drought definition but there are different 

drought concepts such as agricultural, hydrological, meteorological, energy, etc. In 

this study, meteorological drought was used because rainfall data were in progress. 

Meteorological drought can be defined as scarcity of rainfall compared to a selected 

threshold level. A drought event has three main descriptors such as duration, 

severity, and magnitude. Drought duration (DL) represents the elapsed time between 

the start point and the endpoint of the drought. Drought severity (SL) can be defined 

as the total deviations of the variable (e.g. rainfall) during the drought event. The 

drought magnitude (ML) represents the average deficit from the threshold level 

(Akintuğ, 2006). For a frequency analysis, these components need to be calculated 

according to some indexes or a threshold value. In this study, the runs methodology 

was applied because it is a suitable method for sequential stochastic time series of 

hydrological and meteorological variables. In this methodology, a threshold 

(truncation) value is selected to divide the time series into two sections as above 

threshold and below the threshold. The above and below parts represent the surpluses 

and deficits (droughts), respectively. Truncation level can be selected arbitrarily as 

a constant, a function, or a deterministic variable but it is generally selected as the 

mean especially in annual time series. In this study, the mean of the observed data 

was selected as a threshold. Duration, severity, and magnitude are named as run 
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length, run sum, and run intensity in the theory of runs methodology, respectively 

and their relationship can be expressed in equation 4.50 (Dracup et al., 1980). 

 

𝑆𝐿 = 𝑀𝐿 ∗ 𝐷𝐿   

 

(4.50) 

 

Also, all components can be seen in Figure 4.2 (Dracup et al., 1980) visually below 

(X0 represents the truncation value.)  

 

 

Figure 4.2 Main component of the runs of an annual series. Note. Reprinted from 

“On the Definition of Droughts”, by Dracup et al.,1980, Water Resources 

Research, 16(2), p.299. 
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In the drought frequency analysis, the return period is a commonly used element. 

There are several definitions of it but it was defined as a metric that measures the 

average expected recurrence time of the hydrological events. If there are consecutive 

droughts for several years, the return period of a specified drought can be calculated 

as follows (DeWit, 1995; Sadeghipour & Dracup, 1985). 

𝑇 =
𝜏

𝑃𝑒𝑥𝑐
 (4.51) 

 

where 𝜏 and 𝑃𝑒𝑥𝑐 represent the average cycle length of droughts and exceedance 

probability, respectively. 𝜏 and exceedance probability can be computed by using 

the following equations 4.46 and 4.47, 

  

𝜏 =
total number of rainfall years

total number of drought events
 (4.52) 

 

𝑃𝑒𝑥𝑐 =
𝑚

 𝑛 + 1
 

(4.53) 

  

In Equation 4.47, m is the order number of the drought event and n is the total number 

of the drought events. Also, the Weibull plotting position is used for the exceedance 

probability. 
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CHAPTER 5  

5 RESULTS 

In Chapter 4, implemented methods were presented. Some informal controls and 

formal tests to check pre-conditions of the selected methodology and some 

applications for model selection and drought frequency analysis were completed. In 

this chapter, the results of these informal checks, formal tests, and model selection 

applications, and drought frequency analysis were presented. 

5.1 Homogeneity, Quality Control, and Missing Value Detection 

The observed data which was obtained from the Meteorological Office of TRNC 

includes the rainfall values for 37 stations exactly. Zaifoğlu et al. (2017) examined 

this data in terms of quality, homogeneity, and missing values. According to the 

results of this examination, 33 stations were found suitable for further statistical 

analyses. During the missing value detection and quality control process, it was 

found that 14 stations include missing data, and they were filled by using appropriate 

estimation methods. Margo Station was directly removed from the data because of 

having a high level of missing data. According to homogeneity analysis findings, the 

Cayonu station was excluded from the data because it is not homogeneous (Zaifoğlu 
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et al., 2017). Also, Kozankoy and Taskent stations were eliminated from the data 

because their records are not as long as others. These results were taken as a reference 

for further analyses in this study. 

5.2 Normalization 

As one of the most important preconditions of time series analysis, hydrologic 

variables which are used for the analysis need to follow the normal distribution. If 

the variables are not normally distributed, some transformations will be necessary in 

order to make them normal (Salas et al., 1988). The Filliben probability plot 

correlation coefficient was used to decide whether variables in the original data need 

any transformation or necessary transformation method. The highest value 

represents the most appropriate transformation type for normalization.  

Among several transformation techniques, logarithmic, 3-parameter log-normal, and 

Box-Cox transformation were selected to transform non-normal stations into normal. 

Probability plot correlation coefficient values for the non-transformed and 

transformed data by using TH different transformation methods were given in Table 

A.1 in Appendix A. According to these results, the appropriate transformation which 

has the closest value to 1 was applied for necessary stations for the next steps. Except 

for the Güzelyurt (3-parameter log-normal), Akdeniz (2-parameter log-normal), 

Yenierenköy (no transformation), Lefke (3-parameter log-normal), Tatlisu (no 

transformation), and Alevkaya (no transformation), Box-Cox transformation was 

found proper for other stations. 
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 If transformation is not necessary, it can be seen as “no transformation” in Table 

5.1. If it is necessary, the name of the most suitable transformation method for each 

station can be seen in the same table. 

Table 5.1 Transformation types for 33 selected stations  

Station Name Transformation type 
Probability Plot 

Correlation Coefficient(r) 

Akdeniz 2-parameter log-normal 0.9943 

Camlibel Box-Cox 0.9927 

Lapta Box-Cox 0.9924 

Girne Box-Cox 0.9897 

Beylerbeyi Box-Cox 0.9907 

Bogaz Box-Cox 0.9931 

Tatlisu No transformation 0.9982 

Kantara Box-Cox 0.9903 

Esentepe Box-Cox 0.9949 

Guzelyurt 3-Parameter Lognormal 0.9905 

Gaziveren Box-Cox 0.9927 

Lefke 3-Parameter Lognormal 0.9896 

Yesilirmak Box-Cox 0.9873 

Ercan Box-Cox 0.9872 

Serdarli Box-Cox 0.9938 

Degirmenlik Box-Cox 0.9875 

Gecitkale Box-Cox 0.9954 

Gonendere Box-Cox 0.9911 

Vadili Box-Cox 0.9950 

Beyarmudu Box-Cox 0.9944 

Cayirova Box-Cox 0.9926 

Iskele Box-Cox 0.9928 

Mehmetcik Box-Cox 0.9906 

Gazimagusa Box-Cox 0.9906 

Salamis Box-Cox 0.9906 

Alevkaya No transformation 0.9794 

Zumrutkoy Box-Cox 0.9914 

Alaykoy Box-Cox 0.9906 
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Lefkosa Box-Cox 0.9790 

Ziyamet Box-Cox 0.9916 

Dipkarpaz Box-Cox 0.9890 

Yenierenkoy No Transformation 0.9959 

Dortyol Box-Cox 0.9938 

 

5.3 Stationarity 

As another precondition of time series analysis, the stationarity of the normalized 

data needs to be satisfied. Stationarity represents the stability in the mean and 

variance of the data over time (Salas et al., 1988) 

The transformed time series were checked visually with the help of the plot of 

observed average annual rainfall data in Figure 5.1. According to the time plot, the 

data satisfies the stationarity condition because there is no noticeable trend and 

seasonality in the figure.  

 

Figure 5.1 Plot of the observed annual time series for rainfall data in North Cyprus 

from 1978 to 2014 
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Also, autocorrelation values were calculated by means of the “autocorr” function in 

MATLAB (Mathworks Inc, 2021a)  and these values have a fast decrease for all 

stations when the maximum lag is three. This is one of the important indications of 

stationarity. However, for the number of lags higher than three, t-statistic values 

started to be outside critical values and ruin stationarity for some stations. ACF 

values until lag-4 for both transformed and observed data are available in Table B.1 

in Appendix B (values given in parentheses represent ACF values of observed data). 

Also, ACF values for four observed and transformed clusters were indicated in Table 

D.42 in Appendix D.  It can be seen that there is no significant positive or negative 

change in the ACF values after the transformation. It indicates that using transformed 

data will not cause a huge margin of error in the results after applying back 

transformation. 

 Also, correlograms for transformed data indicated that as the lag number increases 

(especially after three), the stationarity of some stations cannot be satisfied. So, the 

suitable number of lags was determined as three for stationarity analysis.  

Also, the optimal lag number was controlled by calculating the AIC and BIC values 

of some candidate ARIMA models for different stations which have different rainfall 

characteristics by using lag 0, 1, 2, and 3. As it is known, AIC and BIC values need 

to be minimized for the most appropriate model. In this study, there is no need to use 

a higher number of lags than three because AIC and BIC values start to be higher as 

more lags are added. As a result, it was decided that the maximum optimal lag 

number is three for this dataset and the time series is stationary. 
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Additionally, the Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) test were applied after the visual check of the data in order to 

confirm the stationarity of the time series formally. The ADF test was conducted 

through the “adftest” function in MATLAB (Mathworks Inc., 2021a). ADF test 

results indicated that time series is stationary because all p-values are smaller than 

0.05 and the null hypothesis should be rejected for all stations. P-value and ADF test 

statistics are available in Table B.2 and Table B.3 in Appendix B.  

In addition, the “kpsstest” function in MATLAB (Mathworks Inc., 2021a) was used 

to conduct the KPSS test and its results confirmed the ADF test results. All t-statistics 

are inside of the confidence intervals and it means that these values are not in the 

rejection regions. The null hypothesis of the KPSS test (𝜎2 = 0) cannot be rejected, 

so it can be concluded that the stationarity condition is satisfied. Table of the p-value 

(Table B.4) and test statistics (Table B.5) of the KPSS test can be seen in Appendix 

B. 

All of these results show that differencing or any type of transformation for 

stationarity is not necessary for the dataset. 

5.4 Clustering 

Among 11 distance methods and seven distance metrics, the most used combinations 

in the literature were applied such as Ward-Correlation, Complete-Correlation, 

Weighted-Correlation, Average-Correlation, and Ward-Spearman. All of these 

combinations were applied by using the “cluster” function in MATLAB ( Mathworks 
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Inc., 2021b) and results were checked for 3, 4, and 5 clusters visually by means of 

the map of the stations. In this process, transformed data was used because this 

clustered data will be required for ARIMA modeling in the next step. The reason for 

using the correlation coefficient similarity measure is that ARIMA models use 

dependent relationships so, controlling correlation coefficients is very important. As 

a result, dividing the study area into 4 clusters by using the Complete-Correlation 

combination was found the smoothest one. The optimal number of clusters and the 

best linkage-similarity combination were decided visually since the sample size is 

not too long and the topographical characteristics of the study area were known well. 

The stations that have similar cross-correlation values were collected in the same 

clusters. Region 1, Region 2, Region 3, and Region 4 include two, 12, 10, and nine 

stations, respectively. Clusters and stations in each cluster can be seen in Figure 5.2 

and Table 5.2. Region 1, 2, 3, and 4 represent the West part of Northern Cyprus, 

North Coast -Mesaria Plain, Central Mesaria Plain, and Karpas Peninsula, 

respectively.  However, there is an exceptional case for the Beyarmudu station. 

Indeed, according to formal results of complete-correlation combination, this station 

needs to be included in region 4 but placing it with the Region 3 stations was more 

reasonable because the correlation coefficients between Beyarmudu station and 

Region 3 stations are higher than the stations in Region 4. Also, Beyarmudu is closer 

to the stations in Region 3 than Region 4 geographically. So, the Beyarmudu station 

was included in the third cluster instead of four. All other possible cluster maps for 

applied different combinations and the different number of clusters were given in the 

figures from C.1 to C.14 in Appendix C.  
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Figure 5.2 The smoothest cluster map by using complete method and correlation 

coefficient similarity metric 

 

Table 5.2 Four rainfall regions produced by cluster analysis 

Region 1 Region 2 Region 3 Region 4 

Yesilirmak 

Lefke 

Akdeniz 

Camlibel 

Lapta 

Girne 

Beylerbeyi 

Bogaz 

Tatlısu 

Esentepe 

Guzelyurt 

Gaziveren 

Zumrutkoy 

Alaykoy 

Ercan 

Serdarlı 

Değirmenlik 

Gecitkale 

Gönendere 

Vadili 

Beyarmudu 

Alevkaya 

Dortyol 

Lefkosa 

Cayirova 

Iskele 

Mehmetcik 

Magusa 

Salamis 

Kantara 

Ziyamet 

Dipkarpaz 

Yeni Erenkoy 
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Also, stations are numbered in order to prevent complexity, so the number of each 

station was given in Table C.3 in Appendix C. All cross-correlation values of the 

stations for observed and transformed data are available in Table C.4 and Table C.5 

respectively in Appendix C. It can be seen that cross-correlation values are very 

similar for observed data and transformed data. It means that transformation for 

normalization did not change the structure of the raw data negatively, even it made 

many correlation coefficients between stations higher.  

Additionally, after dividing the study area into the optimal number of clusters, cross-

correlation coefficients were calculated for observed and transformed regions. First 

of all, observed annual rainfall records of the stations in each region were added to 

each other and imported to MATLAB as a 37x4 matrix. By using these aggregated 

annual records of regions, cross-correlation values between observed regions in 

Table 5.4 were calculated by using the “corrcoef” function in MATLAB software 

(Mathworks Inc., 2021b). Then, an appropriate transformation type was decided to 

transform (if necessary) the observed annual aggregated records of each cluster into 

normal before the ARIMA modeling step. Filliben probability plot correlation 

coefficient was used for this application and Box-Cox transformation was found the 

most appropriate transformation type for all 4 clusters. As the next step, the 

aggregated annual records of each region were transformed by using this type of 

transformation and cross-correlation coefficients between transformed regions were 

calculated as they can be seen in Table 5.5.  
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As can be seen in Tables 5.4 and 5.5, while there was an increase in correlation 

coefficients between region 1, region 2, and region 3 after transformation, 

coefficients between region 4 and other stations declined. This may be one of the 

disadvantages of ARIMA models. Modeling the data by using ARIMA may not be 

a correct decision since it altered the structure of some parts of the time series and 

led to a decrease in the correlation coefficients between some regions. 

Also, correlation coefficients between each region and its stations and cross-

correlations between the stations in the same region for both observed and the 

transformed data are available from Table C.6 to Table C.13 in Appendix C.  

 

Table 5.3 Correlation coefficient of 4 clusters (Observed groups) 

 

 

Table 5.4 Correlation coefficient of 4 clusters (Transformed groups) 

 

Groups OG1 OG2 OG3 OG4

OG1 1.00 0.71 0.58 0.58

OG2 0.71 1.00 0.90 0.86

OG3 0.58 0.90 1.00 0.84

OG4 0.58 0.86 0.84 1.00

Groups TG1 TG2 TG3 TG4

TG1 1.00 0.84 0.87 0.56

TG2 0.84 1.00 0.91 0.58

TG3 0.87 0.91 1.00 0.67

TG4 0.56 0.58 0.67 1.00
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5.5 Model Selection 

After normalization and stationarity control processes, AIC and BIC values were 

checked in order to select the most suitable model for each rainfall station. Firstly, 

these criterion values of all 64 combinations with lag-3 for one representative station 

from different regions (Akdeniz, Lefkosa, and Dipkarpaz) were calculated and given 

in Table D.1, Table D.2, and Table D.3, respectively. These values were calculated 

by means of the “estimate” function in MATLAB (Mathworks Inc., 2021a). 

According to these criterion results, it was found that ARIMA models with lag-0, 

lag-1, and lag-2 have lower AIC and BIC values than models with lag-3. As the lag 

number increases, especially differentiation order, criterion values tend to be higher. 

So, it was decided that using lag-3 is not necessary and AIC and BIC values for 27 

combinations were checked to select the best-fitted model. According to a formal 

rule, the model which has the lowest AIC or BIC values is the best model. This rule 

was taken into consideration but also lag-1 autocorrelation values were evaluated for 

the best model selection. Although ARIMA (0, 0, 0) was given the most appropriate 

model for many rainfall stations, non-ignorable autocorrelation values at lag-1 were 

observed in these stations such as Camlibel, Bogaz, Serdarli, Gecitkale, etc. For these 

stations, models that preserve the autocorrelation at the first lag were selected such 

as ARIMA (1, 0, 0) and ARIMA (0, 0, 1). Oppositely, for example, for Cayirova and 

Zumrutkoy, autocorrelations at the first lag are very small and they can be ignored. 

So, these stations can be modeled by using ARIMA (0, 0, 0). However, AIC and BIC 

values of ARIMA (0, 0, 0) and ARIMA (1, 0, 0) for these stations are very close to 
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each other, so ARIMA (1, 0, 0), that is, AR (1) model was preferred for them without 

ignoring even small autocorrelations at lag 1. 

The most suitable model for all 33 stations with AIC and BIC values can be seen in 

Table 5.5. Also, the AIC and BIC values of all stations for 27 ARIMA model 

combinations are available from Table D.4 to Table D.36 in Appendix D. 

In addition, the most suitable models and their AIC and BIC values for each region 

and the annual average of North Cyprus are available in Table 5.6. All AIC and BIC 

values for 27 ARIMA model combinations were given in Table D.37, Table D.38, 

Table D.39, Table D.40, and Table D.41 in Appendix D.  

According to these tables, ARIMA (1, 0, 0) was found the most suitable ARIMA 

model for Region 1, 2, 3, and 4. ARIMA (1, 0, 0) model does not include integration 

and moving average parts, so it is directly called AR (1) model. During the model 

selection of regions, ACF values of transformed clusters were also controlled. They 

can be seen in Table D.42 in Appendix D. Also, ACF values that were obtained from 

the observed data can be seen under the transformed values in the parentheses in the 

same table. 

 

 

 

 

 



 

 

 

67 

Table 5.5 The most suitable model, AIC and BIC values for 33 stations  

Station Name Suitable Model AIC BIC 

Akdeniz ARIMA(1,0,1) -42.1623 -35.7186 

Camlibel ARIMA(1,0,0) 195.784 200.617 

Lapta ARIMA(0,0,2) 167.102 173.545 

Girne ARIMA(1,0,1) 137.952 144.395 

Beylerbeyi ARIMA(0,0,2) 316.361 322.805 

Bogaz ARIMA(1,0,0) 52.5766 57.4093 

Tatlısu ARIMA(1,0,1) 483.14 489.584 

Kantara ARIMA(0,0,2) 367.094 373.538 

Esentepe ARIMA(0,0,1) 355.973 360.806 

Guzelyurt ARIMA(1,0,1) 14.7803 21.224 

Gaziveren ARIMA(1,0,1) 337.942 344.385 

Lefke ARIMA(0,1,1) 15.9025 20.7353 

Yesilırmak ARIMA(1,0,0) -141.633 -136.8 

Ercan ARIMA(0,0,1) 480.168 485 

Serdarlı ARIMA(0,0,1) 72.0329 76.8656 

Değirmenlik ARIMA(0,0,2) 456.439 462.882 

Gecitkale ARIMA(0,0,1) 567.391 572.224 

Gönendere ARIMA(0,0,1) 509.401 514.234 

Vadili ARIMA(2,0,1) 269.263 277.318 

Beyarmudu ARIMA(0,1,1) 18.8371 23.6698 

Cayirova ARIMA(1,0,0) 209.705 214.538 

Iskele ARIMA(1,0,2) 293.906 301.961 

Mehmetcik ARIMA(1,0,1) 167.881 174.325 

Magusa ARIMA(1,0,2) 31.4379 39.4925 

Salamis ARIMA(0,0,1) 186.775 191.608 

Alevkaya ARIMA(1,0,0) 468.502 473.335 

Zumrutkoy ARIMA(1,0,0) 49.0229 53.8557 

Alaykoy ARIMA(0,0,1) 345.215 350.048 

Lefkosa ARIMA(0,0,1) 407.93 412.763 

Ziyamet ARIMA(1,0,1) 106.714 113.158 

Dipkarpaz ARIMA(0,0,2) 297.875 304.319 

Yeni Erenkoy ARIMA(1,0,2) 463.077 471.132 

Dortyol ARIMA(2,0,1) 248.66 256.715 
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Table 5.6 The most suitable model, AIC and BIC values for four regions and the 

annual average of North Cyprus 

Region Suitable Model AIC BIC 

Region 1 ARIMA(1,0,0) -75.3313 -70.4985 

Region 2 ARIMA(1,0,0) 427.663 432.496 

Region 3 ARIMA(1,0,0) 777.406 782.238 

Region 4 ARIMA(1,0,0) 354.637 359.47 

Annual Average of 

North Cyprus 

ARIMA(1,0,0) 485.372 490.205 

 

5.6 Drought Frequency Analysis 

Drought frequency analysis was performed for both the observed average annual 

rainfall data of all North Cyprus and four different regions of the country. Drought 

events were identified by using the theory of runs and severities, durations, and 

magnitudes of them were calculated. By means of these calculations, the return 

periods of the most severe drought event and the drought event which has the highest 

magnitude were found. 

5.6.1 Observed Drought Events 

Observed annual aggregated data of North Cyprus include the sum of the historical 

records of all 33 stations for one year. So, at the beginning, aggregated historical 

rainfall data were divided by 33 in order to obtain the average rainfall data for each 

water year and make the results more meaningful. Then, the mean for 37 years data 

was calculated and it was abstracted from average rainfall values to reach the 
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normally distributed rainfall data. Negative values mean that the normalized rainfall 

of the related year is below the overall mean and a drought event occurred in that 

related year. Negative values represent the droughts. Drought characteristics of 37 

years of normalized average observed rainfall data between 1978 and 2015 can be 

seen in Figure 5.3.  

 

Figure 5.3 Normalized average observed annual rainfall data of North Cyprus 

 

Also, drought years and values of the drought components (severity, duration, and 

magnitude) are available in Table 5.7. In this observed data, 9 drought events were 

identified with different durations, severities, and magnitudes. Severities were 

calculated by aggregating the consecutive droughts. For example, as seen from 

Figure 5.3, three years of consecutive droughts occurred from 1981 to 1984. 
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Consecutive droughts were accepted as one drought, so normalized rainfall values 

of each year were added to each other and a severity value was obtained for these 

three years. Also, magnitudes were calculated by dividing severities by durations as 

given in equation 4.44. The most critical drought occurred between 1993 and 2000 

with 406.3 mm severity and 7-year duration. 

Table 5.7 Drought parameters of the observed average annual rainfall data of North 

Cyprus 

 

 

5.6.2 Drought Analysis of the Observed Data of Four Regions 

In addition to the annual observed total of all North Cyprus, drought analysis was 

also conducted on the observed values of each cluster. Drought characteristics were 

obtained and drought parameters were calculated by using the same procedure as 

section 5.6.1. Drought characteristics for the Region 1, 2, 3, and 4 can be seen in 

Figures 5.4, 5.5, 5.6, and 5.7 respectively. 

Drought years Duration(year) Severity(mm) Magnitude(mm/year)

1978-1979 1 2.6 2.6

1981-1984 3 251.7 83.9

1985-1986 1 42.6 42.6

1988-1991 3 264.1 88.0

1993-2000 7 406.3 58.0

2005-2006 1 37.9 37.9

2007-2009 2 211.1 105.5

2010-2011 1 34.1 34.1

2013-2014 1 159.9 159.9
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Figure 5.4 Normalized average observed annual rainfall data of Region 1 

 

Figure 5.5 Normalized average observed annual rainfall data of Region 2 
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Figure 5.6 Normalized average observed annual rainfall data of Region 3 

 

 

Figure 5.7 Normalized average observed annual rainfall data of Region 4 
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Also, drought descriptors were calculated for four different regions. They are 

available in Table 5.8, 5.9, 5.10, and 5.11 for Region 1, 2, 3, and 4, respectively. As 

it can be seen from the tables, Durations of the most critical droughts for the region 

1, 2, 3, and 4 were found as 8, 6, 7, and 7 years, respectively. For example, the most 

severe drought of Region 1 occurred between 1993 and 2001, and its severity and 

magnitude were calculated as 572.4 mm and 71.5 mm/year. 

Table 5.8 Drought parameters of the observed average annual rainfall data of 

Region 1 

 

 

Table 5.9 Drought parameters of the observed average annual rainfall data of 

Region 2 

 

 

 

Drought years Duration(year) Severity(mm) Magnitude(mm/year)

1978-1980 2 92.8 46.4

1981-1987 6 358.5 59.7

1989-1991 2 254.4 127.2

1993-2001 8 572.4 71.6

2003-2006 3 272 90.7

2013-2014 1 129.5 129.5

Drought years Duration(year) Severity(mm) Magnitude(mm/year)

1978-1984 6 319.5 53.3

1985-1986 1 59.9 59.9

1988-1991 3 307.1 102.4

1993-1994 1 45.5 45.5

1995-1998 3 260.2 86.7

1999-2000 1 56.3 56.3

2004-2006 2 65.9 33.0

2007-2009 2 257.4 128.7

2010-2011 1 32.8 32.8

2013-2014 1 176.7 176.7
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Table 5.10 Drought parameters of the observed average annual rainfall data of 

Region 3 

 

 

 

Table 5.11 Drought parameters of the observed average annual rainfall data of 

Region 4 

 

 

 

Drought years Duration(year) Severity(mm) Magnitude(mm/year)

1981-1984 3 254.3 84.8

1985-1987 2 50.3 25.2

1988-1991 3 254.1 84.7

1993-2000 7 319.8 45.7

2005-2006 1 41.7 41.7

2007-2009 2 267.1 133.6

2010-2011 1 12.2 12.2

2013-2014 1 89.1 89.1

Drought years Duration(year) Severity(mm) Magnitude(mm/year)

1978-1979 1 13.6 13.6

1981-1984 3 241.8 80.6

1985-1986 1 39.2 39.2

1988-1991 3 228.8 76.3

1993-2000 7 555.1 79.3

2006-2009 3 191.0 63.7

2010-2011 1 74.8 74.8

2013-2014 1 223.2 223.2



 

 

 

75 

5.6.3 Drought Frequency Analysis of Annual Total 

After transforming the annual total synthetic data back, drought frequency analysis 

was performed and drought components were found. Synthetic data generation was 

performed until similar drought components with the observed data were obtained. 

Then, the return period of the maximum severity was calculated. 

5.6.3.1 General Drought Frequency of North Cyprus 

After the most suitable ARIMA model was selected for all North Cyprus, each 

region, and each rainfall station, the historical annual rainfall data was extended by 

using the “simulate” function in MATLAB (Mathworks In., 2021a). However, 

before the synthetic data generation, descriptive statistical properties (mean, standard 

deviation,and correlation coefficient) of the annual observed average data for general 

North Cyprus and 4 different regions were calculated and given in Table 5.12. Then, 

the observed data were transformed by using the Box-Cox transformation technique 

and lambda values for Box-Cox transformation can be seen in Table 5.12.  

Table 5.12 Descriptive Statistics of observed annual rainfall data of North Cyprus 

and its regions 

 Mean Std. Dev. Corr. Coeff. Trans. type lambda 

North Cyprus 379.9 94.4 0.009 Box-Cox 0.684 

Region 1 337.8 109.6 0.266 Box-Cox -0.207 

Region 2 399.8 108.3 0.076 Box-Cox 0.622 

Region 3 332.1 85.5 0.116 Box-Cox 1.282 

Region 4 416.1 106 0.064 Box-Cox 0.567 
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Next, parameters of the transformed annual average data were estimated based on 

ARIMA(1,0,0) model (the best-fitted model). Then, the desired length of data and 

the number of scenarios were generated from the transformed data. At the beginning, 

the sequence was selected as 1 and the length was selected as 100 years in order to 

make a comparison easily.  Statistical properties of the synthetic scenarios were 

found and compared to properties of the transformed data. It was seen that they were 

close to each other. As the length of the synthetic data increased to 1000, 10000, etc.,  

the statistical values have approached the transformed ones and each other. In this 

study, a total of 1 sequence of 3,000,000 years of synthetic rainfalls were generated. 

The length of the synthetic data was not selected arbitrarily. It increased gradually 

until the return period of the most severe drought event started to become stable. 

When 3,000,000 years of data were generated, it was seen that return periods are 

approached each other (Table 5.13). In Table 5.13, TS represents the return period of 

the most severe drought event and TM represents the return period of the drought 

event that has the highest magnitude. When the length is 1,000,000 or 2,000,000, the 

range for the return period of the most severe droughts is similar to the range in 

3,000,000. However, in order to be sure that the range will not change as the length 

of the synthetic data increases, it was decided as 3,000,000 years.  
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Table 5.13 Return periods and tau values of different length of the synthetic annual 

data for 10 trials 

Trial Length 

(years)  

TS (years) TM (years) Tau(τ) 

10 100 30.61 ≤ TS ≤ 94.55 41.33 ≤ TM ≤ 87.31 3.57 ≤ τ ≤ 4.76 

10 1000 49.37 ≤ TS ≤ 87.78 91.19 ≤ TM ≤ 248.1 4.13 ≤ τ ≤ 4.46 

10 10.000 58.39 ≤ TS ≤ 75.83 122.64 ≤ TM ≤ 167.07 4.3 ≤ τ ≤ 4.18 

10 100.000 62.54 ≤ TS ≤ 65.63 127.83 ≤ TM ≤ 143.97 4.21 ≤ τ ≤ 4.26 

10 1.000.000 62.83 ≤ TS ≤ 64.28 136.8 ≤ TM ≤ 142.22 4.24 ≤ τ ≤ 4.25 

10 2.000.000 62.98 ≤ TS ≤ 63.58 136.41 ≤ TM ≤ 140.86 τ = 4.25 

10 3.000.000 62.7 ≤ TS ≤ 64.02 137.48 ≤ TM ≤ 140.26 τ = 4.25 

 

 Then, the back transformation was applied to the generated data to obtain similar 

records to the observed values, and statistics were calculated from back-transformed 

data. It was realized that the mean, standard deviation, and correlation coefficients 

of the back-transformed data were very similar to the observed ones. All of these 

results indicate that transforming the observed data into normal was not a 

disadvantageous application and it did not create a high margin of error. It can be 

concluded that model validation was done and it showed that the model works 

correctly, so generated scenarios that were obtained from the model can be used for 

further analyses such as forecasting, drought frequency, etc. The drought frequency 

analysis was applied using the generated annual rainfall data of North Cyprus and 

drought parameters (durations, severities, and magnitudes) were calculated from one 

sequence. Then, the severities were sorted from the drought event that is the most 
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severe to the lowest one. The exceedance probabilities were also calculated by means 

of the Weibull plotting position formula which was given in Equation 4.53 and these 

values are available in Table 5.14. Also, the exceedance probability-severity graph 

can be seen in Figure 5.8.  

 

Table 5.14 Severities and exceedance probabilities based on the annual synthetic 

data of North Cyprus 

Severity (S) (mm) Exceedance Probability (Pexc) 

684.18 0.01 

448.31 0.05 

348.19 0.1 

246.72 0.2 

188.49 0.3 

147.81 0.4 

116.40 0.5 

90.09 0.6 

66.70 0.7 

44.64 0.8 

22.70 0.9 

2.33 0.99 
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Figure 5.8 Severity-exceedance probability curve based on the annual synthetic 

data of North Cyprus 

 

In order to calculate the return periods of the desired severities, first of all, a tau (τ) 

value in Equation 4.52 was calculated for each synthetic data. Then, return periods 

were found for 5, 10, 20, 50, 100, 200, 500, and 1000-years, respectively, and given 

in Table 5.15. Also, all return periods for different severities were presented in the 

severity-return period graph in Figure 5.9. For example, the return period of a 

drought event with a severity of 300 mm is 30 years or with a severity of 700 mm is 

approximately 500 years. 
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Table 5.15 Severities and return periods based on the annual synthetic data of NC 

Severity (S) (mm) Return Period (T) (years) 

35.93 5 

141.01 10 

272.23 25 

373.54 50 

473.49 100 

575.25 200 

708.37 500 

810.45 1000 

 

 

Figure 5.9 Drought Frequency line based on the annual synthetic data of North 

Cyprus 
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5.6.3.2 Regional Drought Frequency of North Cyprus 

In this part, the synthetic data were disaggregated into four regions and a drought 

frequency analysis was performed for each region one by one to find the return 

period of the most severe drought of each region. In this regional frequency analysis, 

it was seen that generating 1 sequence of 200,000 years of synthetic data was enough 

to obtain stable return periods in all regions. So, the length of the synthetic data was 

decided as 200,000 years. The drought frequency analysis results of each region were 

given in the subsections separately. 

5.6.3.2.1 Region 1:  The West of North Cyprus 

Region 1 represents the west part of North Cyprus and includes 2 stations. 200,000 

years of synthetic data were generated based on the classic AR (1)  model because it 

was found that ARIMA (1, 0, 0) model is the most suitable ARIMA model for this 

region. In Section 5.6.1, drought components of each region from the observed data 

were calculated. The most critical drought occurred between 1993 and 2001 

(duration is 8 years) and its severity and magnitude were measured as 572.4 mm and 

71.6 mm/year. In the next step, return periods of the maximum severity and 

magnitude that are obtained from 200,000 years of synthetic data were given in Table  

5.16. 
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Table 5.16 Return periods of the maximum severity and magnitude and tau value 

for Region 1 

Length (years) TS (years) TM (years) Tau(τ) 

200,000 137 57 4.19 

 

Also, the severities that were obtained from the synthetic data were sorted from the 

drought event that is the most severe to the lowest one. The exceedance probabilities 

were also calculated by means of the Weibull plotting position formula which was 

given in Equation 4.53 and these values are available in Table 5.17. Also, the 

exceedance probability-severity graph can be seen in Figure 5.10. 

Table 5.17 Severities and exceedance probabilities based on the annual synthetic 

data of Region 1 

Severity (S) (mm) Exceedance Probability (Pexc) 

755.33 0.01 

498.13 0.05 

390.50 0.1 

281.28 0.2 

216.42 0.3 

169.94 0.4 

136.73 0.5 

109.35 0.6 

84.29 0.7 

59.13 0.8 

31.40 0.9 

3.39 0.99 
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Figure 5.10  Severity-exceedance probability curve based on the annual synthetic 

data of region  1 

 

In order to calculate the return periods of the desired severities, first of all, an average 

tau (τ) value in Equation 4.52 was calculated for each synthetic data of Region 1. 

Then, return periods were found for 5, 10, 20, 50, 100, 200, 500, and 1000-years, 

respectively, and given in Table 5.18. Also, all return periods for different severities 

were presented in the severity-return period graph in Figure 5.11. For example, the 

return period of a drought event with a severity of 400 mm is 45 years or with a 

severity of 700 mm is approximately 300 years. 
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Table 5.18 Severities and return periods based on the annual synthetic data of 

Region 1 

Severity (S) (mm) Return Period (T) (years) 

48.50 5 

162.70 10 

308.99 25 

417.61 50 

527.29 100 

640.1 200 

782.15 500 

900.73 1000 

 

 

 

Figure 5.11 Drought Frequency line based on the annual synthetic data of Region 1 
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5.6.3.2.2 Region 2:  North Coast-Mesaria Plain 

Region 2 represents North Coast-Mesaria Plain and includes 12 stations. 200,000 

years of synthetic data were generated based on the classic AR (1)  model because it 

was found that ARIMA (1, 0, 0) model is the most suitable ARIMA model for region 

2. In Section 5.6.1, drought components of each region from the observed data were 

calculated. The most critical drought occurred between 1978 and 1984 (duration is 

six years) and its severity and magnitude were measured as 319.5 mm and 53.3 

mm/year. In the next step, return periods of the maximum severity and magnitude 

that are obtained from 200,000 years of synthetic data were given in Table  5.19. 

Table 5.19 Return periods of the maximum severity and magnitude and tau value 

for Region 2 

Length (years) TS (years) TM (years) Tau(τ) 

200,000 26 120 4.26 

 

Also, the severities that were extracted from synthetic data were sorted from the 

drought event that is the most severe to the lowest one. The exceedance probabilities 

were also calculated by means of the Weibull plotting position formula which was 

given in Equation 4.53 and these values are available in Table 5.20. Also, the 

exceedance probability-severity graph can be seen in Figure 5.12. 
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Table 5.20 Severities and exceedance probabilities based on the annual synthetic 

data of Region 2 

Severity (S) (mm) Exceedance Probability (Pexc) 

804.23 0.01 

524.27 0.05 

406.41 0.1 

287.79 0.2 

218.63 0.3 

171.51 0.4 

135.14 0.5 

104.53 0.6 

77.36 0.7 

51.78 0.8 

26.04 0.9 

2.91 0.99 

 

 

Figure 5.12 Severity-exceedance probability curve based on the annual synthetic 

data of Region  2 
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In order to calculate the return periods of the desired severities, first of all, an average 

tau (τ) value in Equation 4.52 was calculated for each synthetic data of Region 2. 

Then, return periods were found for 5, 10, 20, 50, 100, 200, 500, and 1000-years, 

respectively, and given in Table 5.21. Also, all return periods for different severities 

were presented in the severity-return period graph in Figure 5.13. For example, the 

return period of a drought event with a severity of 400 mm is 40 years or with a 

severity of 800 mm is approximately 400 years. 

 

Table 5.21 Severities and return periods based on the annual synthetic data of 

Region 2 

Severity (S) (mm) Return Period (T) (years) 

41.68 5 

163.55 10 

317.62 25 

436.47 50 

556.05 100 

675.16 200 

834.42 500 

950.45 1000 
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Figure 5.13 Drought Frequency line based on the annual synthetic data of Region 2 

 

5.6.3.2.3 Region 3: Central Mesaria 

Region 3 represents Central Mesaria and includes 10 stations. 200,000 years of 

synthetic data were generated based on the classic AR (1)  model because it was 

found that ARIMA (1, 0, 0) model is the most suitable ARIMA model for Region 3. 

In Section 5.6.1, drought components of each region from the observed data were 

calculated. The most critical drought occurred between 1993 and 2000 (duration is 

seven years) and its severity and magnitude were measured as 319.8 mm and 45.7 

mm/year. In the next step, return periods of the maximum severity and magnitude 

that are obtained from 200,000 years of synthetic data were given in Table  5.22. 
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Table 5.22 Return periods of the maximum severity and magnitude and tau value 

for Region 3 

Length (years) TS (years) TM (years) Tau(τ) 

200,000 40 55 4.31 

 

The severities that were extracted from synthetic data were sorted again from the 

drought event that is the most severe to the lowest one. The exceedance probabilities 

were also calculated by means of the Weibull plotting position formula and these 

values are available in Table 5.23. Also, the exceedance probability-severity graph 

can be seen in Figure 5.14. 

 

Table 5.23 Severities and exceedance probabilities based on the annual synthetic 

data of Region 3 

Severity (S) (mm) Exceedance Probability (Pexc) 

660.49 0.01 

427.32 0.05 

330.13 0.1 

230.46 0.2 

173.47 0.3 

133.76 0.4 

102.92 0.5 

78.16 0.6 

56.91 0.7 

37.33 0.8 

18.59 0.9 

1.87 0.99 
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Figure 5.14 Severity-exceedance probability curve based on the annual synthetic 

data of Region  3 

 

In order to calculate the return periods of the desired severities, first of all, an average 

tau (τ) value in Equation 4.52 was calculated for each synthetic data of Region 3. 

Then, return periods were found for 5, 10, 20, 50, 100, 200, 500, and 1000-years, 

respectively, and given in Table 5.24. Also, all return periods for different severities 

were presented in the severity-return period graph in Figure 5.15. For example, the 

return period of a drought event with a severity of 300 mm is 35 years or with a 

severity of 600 mm is approximately 300 years. 
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Table 5.24 Severities and return periods based on the annual synthetic data of 

Region 3 

Severity (S) (mm) Return Period (T) (years) 

29.57 5 

126.77 10 

255.11 25 

354.46 50 

452.11 100 

546.61 200 

681.77 500 

776.89 1000 

 

 

Figure 5.15 Drought Frequency line based on the annual synthetic data of Region 3 
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5.6.3.2.4 Region 4: Karpaz Peninsula 

Region 3 represents Central Mesaria and includes 9 stations. 200,000 years of 

synthetic data were generated based on the classic AR (1)  model because it was 

found that ARIMA (1, 0, 0) model is the most suitable ARIMA model for Region 4. 

In Section 5.6.1, drought components of each region from the observed data were 

calculated. The most critical drought occurred between 1993 and 2000 (duration is 

7 years) and its severity and magnitude were measured as 555.1 mm and 79.3 

mm/year. In the next step, return periods of the maximum severity and magnitude 

that are obtained from 200,000 years of synthetic data were given in Table  5.25. 

Table 5.25 Return periods of the maximum severity and magnitude and tau value 

for Region 4 

Length (years) TS (years) TM (years) Tau(τ) 

200,000 116 720 4.22 

 

The severities that were extracted from synthetic data were sorted again from the 

drought event that is the most severe to the lowest one. The exceedance probabilities 

were also calculated by means of the Weibull plotting position formula and these 

values are available in Table 5.26. Also, the exceedance probability-severity graph 

can be seen in Figure 5.16. 
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Table 5.26 Severities and exceedance probabilities based on the annual synthetic 

data of Region 4 

Severity (S) (mm) Exceedance Probability (Pexc) 

772.04 0.01 

500.68 0.05 

392.35 0.1 

277.89 0.2 

212.42 0.3 

167.06 0.4 

132.12 0.5 

102.59 0.6 

76.21 0.7 

51.07 0.8 

26.34 0.9 

2.72 0.99 

 

 

 

Figure 5.16 Severity-exceedance probability curve based on the annual synthetic 

data of Region  4 
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In order to calculate the return periods of the desired severities, first of all, an average 

tau (τ) value in Equation 4.52 was calculated for each synthetic data of Region 4. 

Then, return periods were found for 5, 10, 20, 50, 100, 200, 500, and 1000-years, 

respectively, and given in Table 5.27. Also, all return periods for different severities 

were presented in the severity-return period graph in Figure 5.17. For example, the 

return period of a drought event with a severity of 300 mm is 25 years or with a 

severity of 800 mm is approximately 500 years. 

 

Table 5.27 Severities and return periods based on the annual synthetic data of 

Region 4 

Severity (S) (mm) Return Period (T) (years) 

41.41 5 

159.91 10 

306.02 25 

419.72 50 

528.51 100 

646.26 200 

800.03 500 

923.30 1000 
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Figure 5.17 Drought Frequency line based on the annual synthetic data of Region 4 
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CHAPTER 6  

6 CONCLUSIONS AND FUTURE WORKS 

The main objectives of this study were to model the annual rainfall data of North 

Cyprus by using ARIMA models and performing drought frequency analysis to find 

the return period of the most severe drought event.  

Clustering analysis was conducted for different clustering combinations. In the end, 

the study area was divided into 4 clusters as Region 1, Region 2, Region 3, and 

Region 4. 

Then, Box-Jenkin’s modeling procedure was applied to select the most suitable 

ARIMA model for 33 rainfall stations and four regions. The results revealed that the 

best ARIMA models that describe this data were low-order ARIMA combinations 

with lag-0 and lag-1. Eight stations were modeled by ARIMA (0, 0, 1), that is, MA 

(1), seven stations by ARIMA (1, 0, 1), that is, ARMA (1, 1),  five stations by 

ARIMA (0, 0, 2), six stations by ARIMA (1, 0, 0), that is AR (1), three stations by 

ARIMA (1, 0, 2), two stations by ARIMA (2, 0, 1),  and two stations by ARIMA (0, 

1, 1). Also, the same applications were performed for clusters and overall annual 

data and it was decided both all of the clusters and overall data can be modeled by 

ARIMA (1, 0, 0), that is, AR (1) model.  

For the main purpose of the study, a drought frequency analysis was performed for 

the annual average rainfall data of Northern Cyprus and its four regions. After 
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synthetic data generation based on the most suitable ARIMA models, drought 

components (duration, severity, and magnitude) were obtained. For the annual 

average of North Cyprus, the return period of the most severe (406.3 mm) drought 

was found as 63 years and it can be concluded that it is a frequent event, and the 

probability of experiencing this kind of event is quite high. Also, the study area was 

divided into 4 regions by means of the spatial disaggregation method and regional 

drought frequency analysis was performed. For Region 1 and Region 4, return 

periods of the most severe drought events were found as 137 years (with a severity 

of 572.4 mm) and 116 years (with severity of 555.1 mm). This means that these 

drought events are relatively rare events and the probability of facing them in these 

regions is low since their return periods are higher than 100 years (a threshold level 

in drought frequency analysis). However, in Region 2 and 3, return periods were 

calculated as 26 and 40 years with severities of 319.5 mm and 319.8 mm. It can be 

concluded that these kinds of drought events can be seen frequently in the future 

because their return periods are way smaller than 100 years. 

Despite the sample size of this study is enough for a time series analysis and longer 

synthetic data were generated, using longer historical data always provides better 

and more reliable results. As a result, it is recommended to repeat this study once 

more recent rainfall data are obtained.  

As another suggestion, model uncertainty may occur because of some restrictions 

and assumptions of the models, so it should be considered for future analyses. In this 

study, ARIMA models were used to model the rainfall data but there are some pre-
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conditions of ARIMA models, so transformation may be required. The 

transformation process may ruin the data and affect the results. Also, ARIMA models 

are not able to model some characteristics like cyclical patterns or periodicity. 

Choosing a model with a restriction that is not appropriate for the observed data may 

cause model uncertainty. For future studies, this data can be modeled by using 

different time series modeling methods in order to compare with the results of this 

study. 

In addition, frequency analysis can be applied for each rainfall station by 

disaggregating each region into its proper stations to obtain more detailed drought 

information. Also, in this study, severities were independently obtained from the 

durations. In another study, severities can be calculated by fixing the durations and 

return periods can be calculated accordingly.  

Also, only mean as a threshold value may not give proper information about the 

drought levels. It can be suggested that different threshold levels can be used such as 

mean ± 1 standard deviation in order to classify more severe drought events. 

Additionally, any indices can be used instead of mean as a threshold level such as 

standardized precipitation index, rainfall anomaly index, and drought severity index.  

This thesis will be very helpful and beneficial for further studies as it estimates the 

drought characteristics and return periods of the critical droughts of North Cyprus. 

As a suggestion, future rainfall characteristics of the country can be forecasted from 

the generated data directly for better meteorological predictions. Most importantly, 

better strategies can be developed in sustainable water resource management to 
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protect the water resources of North Cyprus and important precautions can be taken 

to minimize the devastating effects of climate change.
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APPENDICES 

A. Normalization 

A.1 Introduction 

In this appendix, probability plot correlation coefficients for no transformation and 

3 different transformation types were shared. The best transformation type for each 

station was indicated in bold in Table A.1. 

Table A. 1 Probability Plot Correlation Coefficients without transformation and 

with 3 different transformation types for 33 stations 

 

Station 

Name 

Probability Plot Correlation Coefficient(r) 

Without 

transformation 

(original data) 

Logarithmic  3 parameter 

Log-normal  

Box-Cox 

 

Akdeniz 0.9942 0.9775 0.9774 0.9943 

Camlibel 0.9847 0.9877 0.9876 0.9927 

Lapta 0.9830 0.9904 0.9904 0.9924 

Girne 0.9785 0.9881 0.9880 0.9897 

Beylerbeyi 0.9891 0.9738 0.9736 0.9907 

Bogaz 0.9742 0.9930 0.9930 0.9931 

Tatlisu 0.9882 0.9737 0.9736 0.9879 

Kantara 0.9902 0.9781 0.9780 0.9903 

Esentepe 0.9931 0.9729 0.9728 0.9949 

Guzelyurt 0.9872 0.9827 0.9826 0.9905 

Gaziveren 0.9924 0.9839 0.9838 0.9927 

Lefke 0.9811 0.9895 0.9896 0.9895 

Yesilirmak 0.9459 0.9818 0.9818 0.9873 

Ercan 0.9865 0.9344 0.9340 0.9872 

Serdarli 0.9780 0.9043 0.9038 0.9938 

Degirmenlik 0.9874 0.9414 0.9410 0.9875 

Gecitkale 0.9923 0.9538 0.9536 0.9954 

Gonendere 0.9903 0.9574 0.9572 0.9911 
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Vadili 0.9924 0.9867 0.9866 0.9950 

Beyarmudu 0.9790 0.9943 0.9944 0.9944 

Cayirova 0.9876 0.9881 0.9880 0.9926 

Iskele 0.9913 0.9853 0.9852 0.9928 

Mehmetcik 0.9824 0.9866 0.9865 0.9906 

Gazimagusa 0.9709 0.9906 0.9906 0.9906 

Salamis 0.9824 0.9866 0.9865 0.9906 

Alevkaya 0.9794 0.9407 0.9404 0.9790 

Zumrutkoy 0.9733 0.9913 0.9912 0.9914 

Alaykoy 0.9896 0.9727 0.9725 0.9906 

Lefkosa 0.9789 0.9393 0.9390 0.9790 

Ziyamet 0.9772 0.9906 0.9906 0.9916 

Dipkarpaz 0.9849 0.9786 0.9785 0.9890 

Yenierenkoy 0.9959 0.9753 0.9752 0.9959 

Dortyol 0.9907 0.9873 0.9872 0.9938 
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B. Stationary Results 

B.1 Introduction  

In Chapter 5, stationarity of the time series was checked by using autocorrelation 

values at lag-0, lag-1, lag-2, and lag-3, Augmented Dickey-Fuller (ADF), and 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Tests. The tables in this appendix 

represent the p-values and t-statistics of the tests and ACF values for each station. 

Table B. 1 Autocorrelation Coefficient Function (ACF) Values for transformed and 

observed annual data of 33 stations at Lag 0, Lag 1, Lag 2, and Lag 3 

Station /ACF 

value 
Lag 0 Lag 1 Lag 2 Lag 3 

Akdeniz 
1.0 

(1.0) 

-0.08 

(-0.02) 

-0.25 

(-0.28) 

0.02 

(0.02) 

Camlibel 
1.0 

(1.0) 

-0.001 

(0.03) 

-0.004 

(0.008) 

0.23 

(0.28) 

Lapta 
1.0 

(1.0) 

0.07 

(0.08) 

-0.17 

(-0.14) 

0.05 

(0.03) 

Girne 
1.0 

(1.0) 

-0.007 

(-0.01) 

-0.08 

(-0.07) 

-0.13 

(-0.13) 

Beylerbeyi 
1.0 

(1.0) 

-0.0003 

(-0.007) 

-0.16 

(-0.15) 

-0.05 

(-0.05) 

Bogaz 
1.0 

(1.0) 

0.16 

(0.19) 

0.06 

(0.08) 

-0.04 

(0.03) 

Tatlısu 
1.0 

(1.0) 

0.26 

(0.26) 

0.12 

(0.12) 

0.12 

(0.12) 

Kantara 
1.0 

(1.0) 

0.06 

(0.08) 

-0.21 

(-0.21) 

-0.1 

(-0.1) 

Esentepe 
1.0 

(1.0) 

0.17 

(0.17) 

-0.09 

(-0.07) 

0.01 

(0.01) 

Guzelyurt 
1.0 

(1.0) 

-0.03 

(-0.01) 

-0.18 

(-0.13) 

-0.05 

(-0.07) 

Gaziveren 
1.0 

(1.0) 

-0.07 

(-0.06) 

-0.12 

(-0.11) 

0.02 

(0.01) 

Lefke 
1.0 

(1.0) 

0.10 

(0.15) 

-0.14 

(-0.13) 

-0.06 

(-0.06) 
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Yesilırmak 
1.0 

(1.0) 

0.31 

(0.33) 

0.06 

(0.18) 

-0.07 

(0.1) 

Ercan 
1.0 

(1.0) 

0.22 

(0.21) 

-0.15 

(-0.15) 

-0.08 

(-0.08) 

Serdarlı 
1.0 

(1.0) 

0.08 

(0.08) 

-0.12 

(-0.15) 

0.07 

(0.002) 

Değirmenlik 
1.0 

(1.0) 

0.18 

(0.18) 

-0.2 

(-0.2) 

-0.02 

(-0.02) 

Gecitkale 
1.0 

(1.0) 

0.14 

(0.13) 

-0.06 

(-0.06) 

-0.009 

(-0.02) 

Gönendere 
1.0 

(1.0) 

0.21 

(0.2) 

-0.04 

(-0.05) 

-0.07 

(-0.07) 

Vadili 
1.0 

(1.0) 

0.18 

(0.18) 

-0.19 

(-0.17) 

-0.1 

(-0.12) 

Beyarmudu 
1.0 

(1.0) 

0.009 

(0.01) 

-0.07 

(-0.02) 

0.25 

(0.35) 

Cayirova 
1.0 

(1.0) 

-0.01 

(0.005) 

-0.05 

(-0.04) 

0.09 

(0.1) 

Iskele 
1.0 

(1.0) 

0.04 

(0.05) 

-0.11 

(-0.1) 

-0.05 

(-0.06) 

Mehmetcik 
1.0 

(1.0) 

0.09 

(0.1) 

-0.06 

(-0.04) 

0.02 

(0.04) 

Magusa 
1.0 

(1.0) 

0.24 

(0.23) 

-0.1 

(-0.12) 

0.001 

(-0.008) 

Salamis 
1.0 

(1.0) 

0.07 

(0.06) 

-0.02 

(-0.009) 

-0.01 

(-0.07) 

Alevkaya 
1.0 

(1.0) 

0.05 

(0.05) 

-0.11 

(-0.11) 

0.085 

(0.08) 

Zumrutkoy 
1.0 

(1.0) 

0.009 

(0.015) 

-0.12 

(-0.06) 

0.07 

(0.12) 

Alaykoy 
1.0 

(1.0) 

0.07 

(0.09) 

0.01 

(0.005) 

-0.02 

(-0.03) 

Lefkosa 
1.0 

(1.0) 

0.25 

(0.26) 

0.18 

(0.18) 

-0.02 

(-0.02) 

Ziyamet 
1.0 

(1.0) 

-0.10 

(-0.09) 

-0.02 

(-0.006) 

-0.08 

(-0.08) 

Dipkarpaz 
1.0 

(1.0) 

0.01 

(0.003) 

-0.1 

(-0.09) 

-0.09 

(-0.12) 

Yeni Erenkoy 
1.0 

(1.0) 

0.07 

(0.07) 

-0.14 

(-0.14) 

0.07 

(0.07) 

Dortyol 
1.0 

(1.0) 

0.18 

(0.19) 

-0.2 

(-0.2) 

-0.15 

(-0.16) 
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Table B. 2 p-values of Augmented Dickey-Fuller Test 

Station Name/ Test 

Name 

ADF Test 

P-value 

(lag 0) 

P-value 

(lag 1) 

P-value 

(lag 2) 

P-value 

(lag 3) 

Akdeniz 0.001 0.001 0.03 0.003 

Camlibel 0.001 0.002 0.07 0.01 

Lapta 0.001 0.003 0.09 0.003 

Girne 0.001 0.009 0.02 0.045 

Beylerbeyi 0.001 0.003 0.03 0.01 

Bogaz 0.002 0.042 0.09 0.01 

Tatlısu 0.003 0.054 0.24 0.02 

Kantara 0.001 0.002 0.02 0.03 

Esentepe 0.002 0.011 0.13 0.02 

Guzelyurt 0.001 0.002 0.02 0.004 

Gaziveren 0.001 0.003 0.04 0.02 

Lefke 0.001 0.002 0.014 0.08 

Yesilırmak 0.015 0.04 0.09 0.16 

Ercan 0.003 0.004 0.03 0.06 

Serdarlı 0.001 0.003 0.05 0.03 

Değirmenlik 0.001 0.001 0.01 0.03 

Gecitkale 0.001 0.018 0.09 0.15 

Gönendere 0.003 0.0136 0.05 0.016 

Vadili 0.003 0.004 0.04 0.05 

Beyarmudu 0.001 0.001 0.1 0.04 

Cayirova 0.001 0.008 0.12 0.01 

Iskele 0.001 0.007 0.04 0.01 

Mehmetcik 0.001 0.006 0.05 0.01 

Magusa 0.006 0.01 0.16 0.014 

Salamis 0.001 0.019 0.1 0.1 

Alevkaya 0.001 0.001 0.03 0.014 

Zumrutkoy 0.001 0.002 0.04 0.022 

Alaykoy 0.001 0.03 0.12 0.07 

Lefkosa 0.006 0.11 0.13 0.14 

Ziyamet 0.001 0.01 0.04 0.13 

Dipkarpaz 0.001 0.008 0.03 0.016 

Yeni Erenkoy 0.001 0.006 0.15 0.09 

Dortyol 0.003 0.004 0.04 0.02 
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Table B. 3 t-statistics of Augmented Dickey-Fuller Test 

Station Name/ 

Test Name 

ADF Test 

t-statistic 

(lag 0) 

t-statistic 

(lag 1) 

t-statistic 

(lag 2) 

t-statistic 

(lag 3) 

Akdeniz -6.22 -5.37 -3.72 -4.71 

Camlibel -6.46 -4.97 -3.34 -4.24 

Lapta -5.36 -4.75 -3.22 -4.85 

Girne -5.80 -4.27 -3.78 -3.59 

Beylerbeyi -5.76 -4.78 -3.73 -4.25 

Bogaz -4.85 -3.62 -3.20 -4.00 

Tatlısu -4.69 -3.50 -2.71 -3.83 

Kantara -5.38 -4.88 -3.94 -3.69 

Esentepe -4.87 -4.20 -3.05 -3.79 

Guzelyurt -5.93 -4.90 -3.83 -4.60 

Gaziveren -6.20 -4.83 -3.60 -3.94 

Lefke -5.43 -4.95 -4.12 -3.30 

Yesilırmak -4.06 -3.64 -3.25 -2.92 

Ercan -4.75 -4.66 -3.69 -3.42 

Serdarlı -5.46 -4.73 -3.50 -3.68 

Değirmenlik -5.12 -5.58 -3.96 -3.69 

Gecitkale -5.00 -3.99 -3.24 -2.96 

Gönendere -4.79 -4.12 -3.52 -4.06 

Vadili -4.78 -4.61 -3.56 -3.53 

Beyarmudu -6.19 -5.05 -3.16 -3.65 

Cayirova -5.93 -4.32 -3.10 -4.21 

Iskele -5.46 -4.41 -3.55 -3.98 

Mehmetcik -5.27 -4.45 -3.46 -4.25 

Magusa -4.45 -4.22 -2.93 -4.09 

Salamis -5.44 -3.97 -3.19 -3.19 

Alevkaya -5.77 -5.35 -3.75 -4.11 

Zumrutkoy -5.99 -4.98 -3.58 -3.91 

Alaykoy -5.21 -3.75 -3.07 -3.34 

Lefkosa -4.42 -3.11 -3.06 -3.00 

Ziyamet -6.52 -4.23 -3.57 -3.06 

Dipkarpaz -5.63 -4.31 -3.67 -4.05 

Yeni Erenkoy -5.39 -4.42 -2.97 -3.25 

Dortyol -4.82 -4.59 -3.6 -3.85 
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Table B. 4 p-values of Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test 

Station 

Name/Test Name 

KPSS Test 

P-value 

(lag 0) 

P-value 

(lag 1) 

P-value 

(lag 2) 

P-value 

(lag 3) 

Akdeniz 0.1 0.1 0.1 0.1 

Camlibel 0.1 0.1 0.1 0.1 

Lapta 0.1 0.1 0.1 0.1 

Girne 0.1 0.1 0.1 0.1 

Beylerbeyi 0.1 0.1 0.1 0.1 

Bogaz 0.1 0.1 0.1 0.1 

Tatlısu 0.1 0.1 0.1 0.1 

Kantara 0.1 0.1 0.1 0.1 

Esentepe 0.1 0.1 0.1 0.1 

Guzelyurt 0.1 0.1 0.1 0.1 

Gaziveren 0.1 0.1 0.1 0.1 

Lefke 0.1 0.1 0.1 0.1 

Yesilırmak 0.0612 0.1 0.1 0.1 

Ercan 0.1 0.1 0.1 0.1 

Serdarlı 0.1 0.1 0.1 0.1 

Değirmenlik 0.1 0.1 0.1 0.1 

Gecitkale 0.1 0.1 0.1 0.1 

Gönendere 0.1 0.1 0.1 0.1 

Vadili 0.1 0.1 0.1 0.1 

Beyarmudu 0.1 0.1 0.1 0.1 

Cayirova 0.1 0.1 0.1 0.1 

Iskele 0.1 0.1 0.1 0.1 

Mehmetcik 0.1 0.1 0.1 0.1 

Magusa 0.1 0.1 0.1 0.1 

Salamis 0.1 0.1 0.1 0.1 

Alevkaya 0.1 0.1 0.1 0.1 

Zumrutkoy 0.1 0.1 0.1 0.1 

Alaykoy 0.1 0.1 0.1 0.1 

Lefkosa 0.1 0.1 0.1 0.1 

Ziyamet 0.1 0.1 0.1 0.1 

Dipkarpaz 0.1 0.1 0.1 0.1 

Yeni Erenkoy 0.1 0.1 0.1 0.1 

Dortyol 0.1 0.1 0.1 0.1 
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Table B. 5 t-statistics of Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test 

Station Name/ 

Test Name 

KPSS Test 

t-statistic 

(lag 0) 

t-statistic 

(lag 1) 

t-statistic 

(lag 2) 

t-statistic 

(lag 3) 

Akdeniz 0.0327 0.0356 0.0451 0.0514 

Camlibel 0.0475 0.0531 0.0629 0.0634 

Lapta 0.0422 0.0397 0.0443 0.0460 

Girne 0.0342 0.0345 0.0366 0.0408 

Beylerbeyi 0.0283 0.0285 0.0324 0.0363 

Bogaz 0.0825 0.0727 0.0690 0.0698 

Tatlısu 0.0882 0.0731 0.0686 0.0655 

Kantara 0.0417 0.0392 0.0448 0.0518 

Esentepe 0.0562 0.0487 0.0503 0.0516 

Guzelyurt 0.0339 0.0351 0.0412 0.0471 

Gaziveren 0.0279 0.0305 0.0356 0.0388 

Lefke 0.0536 0.0509 0.0588 0.0704 

Yesilırmak 0.1399 0.1084 0.1008 0.1024 

Ercan 0.0503 0.0419 0.0443 0.0484 

Serdarlı 0.0603 0.0568 0.0621 0.0639 

Değirmenlik 0.0747 0.0650 0.0728 0.0806 

Gecitkale 0.0770 0.0676 0.0676 0.0681 

Gönendere 0.0441 0.0371 0.0370 0.0389 

Vadili 0.0446 0.0376 0.0400 0.0442 

Beyarmudu 0.0568 0.0617 0.0745 0.0735 

Cayirova 0.0436 0.0451 0.0487 0.0489 

Iskele 0.0453 0.0432 0.0457 0.0485 

Mehmetcik 0.0649 0.0606 0.0640 0.0668 

Magusa 0.0577 0.0465 0.0465 0.0468 

Salamis 0.0469 0.0446 0.0448 0.0454 

Alevkaya 0.0683 0.0665 0.0739 0.0759 

Zumrutkoy 0.0350 0.0365 0.0433 0.0473 

Alaykoy 0.0725 0.0680 0.0663 0.0663 

Lefkosa 0.0901 0.0723 0.0628 0.0598 

Ziyamet 0.0396 0.0453 0.0485 0.0530 

Dipkarpaz 0.0378 0.0376 0.0401 0.0437 

Yeni Erenkoy 0.0482 0.0455 0.0489 0.0489 

Dortyol 0.0421 0.0356 0.0380 0.0425 
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C. Clustering 

C.1 Introduction 

In this appendix, all linkages and distance metrics were shared. Table C.1 and Table C.2 were 

directly taken from the User's Guide of the Statistics and Machine Learning Toolbox of MATLAB. 

There are 7 distance methods and 11 distance metrics to create an optimal number of clusters by 

using the appropriate linkage and similarity measures. In all figures between Figure C.1 and C.14, 

Group 1, Group 2, Group 3, and Group 4 represent the West part of NC (Region 1), North Coast 

and West Mesaria Plain (Region 2), Central Mesaria Plain (Region3),  and Karpaz Peninsula (East-

Coast) (Region 4). 

Table C. 1 Linkages 

Distance Methods 

Average 

Centroid 

Complete 

Median 

Single 

Ward 

Weighted 

 

Table C. 2 Distance Metrics 

Distance Metrics 

Euclidean 

Squared Euclidean 

Mahalanobis 

Cityblock 

Minkowski 

Chebychev 

Cosine 
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Correlation 

Hamming 

Jaccard 

Spearman 

 

Table C. 3 Number of each station 

Station 

Number 
Station Name 

1 Akdeniz 

2 Camlibel 

3 Lapta 

4 Girne 

5 Beylerbeyi 

6 Bogaz 

7 Tatlısu 

8 Kantara 

9 Esentepe 

10 Guzelyurt 

11 Gaziveren 

12 Lefke 

13 Yesilırmak 

14 Ercan 

15 Serdarlı 

16 Değirmenlik 

17 Gecitkale 

18 Gönendere 

19 Vadili 

20 Beyarmudu 

21 Cayirova 

22 Iskele 

23 Mehmetcik 

24 Magusa 

25 Salamis 

26 Alevkaya 

27 Zumrutkoy 

28 Alaykoy 

29 Lefkosa 

30 Ziyamet 

31 Dipkarpaz 

32 Yeni Erenkoy 

33 Dortyol 
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CLUSTER MAPS FOR 3 CLUSTERS 

 

Figure C. 1 Average-Correlation combination with 3 clusters 

 

 

Figure C. 2 Complete or Weighted-Correlation combination with 3 clusters 
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Figure C. 3 Ward-Correlation combination with 3 clusters 

 

 

Figure C. 4 Ward-Spearman combination with 3 clusters 
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CLUSTER MAPS FOR 4 CLUSTERS 

 

Figure C. 5 Average-Correlation combination with 4 clusters 

 

 

Figure C. 6 Complete-Correlation combinations with 4 clusters 
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Figure C. 7 Ward-Correlation combination with 4 clusters 

 

 

Figure C. 8 Ward-Spearman combination with 4 clusters 
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Figure C. 9 Weighted-Correlation combination with 4 clusters 

 

CLUSTER MAPS FOR 5 CLUSTERS 

 

 

Figure C. 10 Average-Correlation combination with 5 clusters 
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Figure C. 11 Complete-Correlation Combination with 5 clusters 

 

 

Figure C. 12 Ward-Correlation combination with 5 clusters 
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Figure C. 13 Ward-Spearman combination with 5 clusters 

 

 

Figure C. 14 Weighted-Correlation with 5 clusters
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Table C. 4 Correlation Coefficient Matrix of observed annual data of 33 stations 

 

 

 

 

 

 

Station # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1 1.00 0.83 0.81 0.64 0.69 0.62 0.70 0.72 0.71 0.89 0.79 0.49 0.57 0.63 0.58 0.56 0.57 0.62 0.71 0.71 0.68 0.66 0.69 0.68 0.61 0.61 0.82 0.66 0.57 0.68 0.61 0.68 0.67

2 0.83 1.00 0.80 0.60 0.68 0.64 0.73 0.68 0.73 0.78 0.70 0.61 0.67 0.63 0.63 0.59 0.60 0.65 0.61 0.73 0.70 0.62 0.72 0.60 0.48 0.73 0.83 0.66 0.63 0.55 0.60 0.58 0.53

3 0.81 0.80 1.00 0.71 0.81 0.80 0.68 0.71 0.63 0.81 0.75 0.58 0.65 0.74 0.61 0.53 0.59 0.71 0.74 0.74 0.74 0.69 0.76 0.75 0.61 0.66 0.74 0.64 0.66 0.61 0.69 0.70 0.68

4 0.64 0.60 0.71 1.00 0.92 0.70 0.75 0.69 0.68 0.73 0.68 0.56 0.51 0.77 0.70 0.60 0.75 0.82 0.83 0.70 0.65 0.73 0.62 0.71 0.64 0.67 0.72 0.62 0.71 0.60 0.56 0.67 0.75

5 0.69 0.68 0.81 0.92 1.00 0.78 0.80 0.77 0.70 0.74 0.69 0.52 0.57 0.79 0.74 0.72 0.72 0.82 0.81 0.74 0.71 0.79 0.73 0.75 0.64 0.76 0.75 0.64 0.73 0.63 0.59 0.69 0.75

6 0.62 0.64 0.80 0.70 0.78 1.00 0.67 0.62 0.64 0.67 0.65 0.57 0.71 0.61 0.61 0.50 0.68 0.71 0.69 0.74 0.76 0.72 0.72 0.75 0.51 0.70 0.74 0.54 0.54 0.47 0.54 0.49 0.69

7 0.70 0.73 0.68 0.75 0.80 0.67 1.00 0.73 0.84 0.67 0.64 0.50 0.44 0.65 0.70 0.61 0.71 0.76 0.78 0.72 0.77 0.74 0.74 0.77 0.62 0.63 0.74 0.55 0.65 0.65 0.65 0.66 0.74

8 0.72 0.68 0.71 0.69 0.77 0.62 0.73 1.00 0.70 0.67 0.62 0.56 0.51 0.65 0.66 0.60 0.65 0.67 0.69 0.68 0.77 0.83 0.83 0.78 0.72 0.71 0.73 0.58 0.59 0.69 0.70 0.79 0.72

9 0.71 0.73 0.63 0.68 0.70 0.64 0.84 0.70 1.00 0.69 0.60 0.41 0.39 0.63 0.72 0.59 0.73 0.70 0.68 0.64 0.71 0.68 0.65 0.64 0.52 0.63 0.78 0.68 0.67 0.62 0.54 0.56 0.73

10 0.89 0.78 0.81 0.73 0.74 0.67 0.67 0.67 0.69 1.00 0.91 0.56 0.61 0.71 0.64 0.58 0.64 0.71 0.76 0.72 0.63 0.65 0.65 0.63 0.58 0.60 0.90 0.73 0.69 0.58 0.47 0.60 0.66

11 0.79 0.70 0.75 0.68 0.69 0.65 0.64 0.62 0.60 0.91 1.00 0.57 0.60 0.70 0.66 0.50 0.63 0.76 0.70 0.72 0.65 0.65 0.64 0.63 0.56 0.57 0.83 0.71 0.68 0.48 0.41 0.55 0.66

12 0.49 0.61 0.58 0.56 0.52 0.57 0.50 0.56 0.41 0.56 0.57 1.00 0.63 0.44 0.35 0.24 0.47 0.45 0.54 0.64 0.53 0.54 0.52 0.55 0.44 0.41 0.60 0.42 0.36 0.34 0.54 0.50 0.50

13 0.57 0.67 0.65 0.51 0.57 0.71 0.44 0.51 0.39 0.61 0.60 0.63 1.00 0.46 0.33 0.32 0.40 0.49 0.52 0.70 0.52 0.38 0.60 0.54 0.38 0.57 0.69 0.46 0.32 0.31 0.42 0.40 0.47

14 0.63 0.63 0.74 0.77 0.79 0.61 0.65 0.65 0.63 0.71 0.70 0.44 0.46 1.00 0.83 0.71 0.72 0.82 0.81 0.69 0.59 0.65 0.66 0.67 0.62 0.75 0.67 0.64 0.85 0.52 0.50 0.65 0.74

15 0.58 0.63 0.61 0.70 0.74 0.61 0.70 0.66 0.72 0.64 0.66 0.35 0.33 0.83 1.00 0.77 0.83 0.85 0.77 0.65 0.70 0.79 0.66 0.68 0.66 0.79 0.69 0.57 0.75 0.51 0.45 0.61 0.78

16 0.56 0.59 0.53 0.60 0.72 0.50 0.61 0.60 0.59 0.58 0.50 0.24 0.32 0.71 0.77 1.00 0.68 0.66 0.59 0.51 0.56 0.67 0.59 0.48 0.55 0.78 0.64 0.53 0.71 0.52 0.41 0.55 0.58

17 0.57 0.60 0.59 0.75 0.72 0.68 0.71 0.65 0.73 0.64 0.63 0.47 0.40 0.72 0.83 0.68 1.00 0.81 0.79 0.72 0.80 0.83 0.71 0.71 0.70 0.67 0.70 0.68 0.71 0.70 0.60 0.61 0.80

18 0.62 0.65 0.71 0.82 0.82 0.71 0.76 0.67 0.70 0.71 0.76 0.45 0.49 0.82 0.85 0.66 0.81 1.00 0.83 0.70 0.72 0.79 0.69 0.73 0.63 0.74 0.72 0.59 0.77 0.53 0.53 0.63 0.82

19 0.71 0.61 0.74 0.83 0.81 0.69 0.78 0.69 0.68 0.76 0.70 0.54 0.52 0.81 0.77 0.59 0.79 0.83 1.00 0.76 0.70 0.77 0.66 0.82 0.79 0.66 0.72 0.55 0.66 0.68 0.65 0.72 0.86

20 0.71 0.73 0.74 0.70 0.74 0.74 0.72 0.68 0.64 0.72 0.72 0.64 0.70 0.69 0.65 0.51 0.72 0.70 0.76 1.00 0.84 0.69 0.76 0.81 0.69 0.68 0.74 0.51 0.53 0.56 0.58 0.61 0.71

21 0.68 0.70 0.74 0.65 0.71 0.76 0.77 0.77 0.71 0.63 0.65 0.53 0.52 0.59 0.70 0.56 0.80 0.72 0.70 0.84 1.00 0.84 0.87 0.87 0.77 0.67 0.69 0.56 0.56 0.70 0.73 0.68 0.76

22 0.66 0.62 0.69 0.73 0.79 0.72 0.74 0.83 0.68 0.65 0.65 0.54 0.38 0.65 0.79 0.67 0.83 0.79 0.77 0.69 0.84 1.00 0.82 0.83 0.80 0.74 0.70 0.62 0.67 0.73 0.68 0.75 0.82

23 0.69 0.72 0.76 0.62 0.73 0.72 0.74 0.83 0.65 0.65 0.64 0.52 0.60 0.66 0.66 0.59 0.71 0.69 0.66 0.76 0.87 0.82 1.00 0.83 0.72 0.69 0.70 0.61 0.62 0.69 0.70 0.74 0.70

24 0.68 0.60 0.75 0.71 0.75 0.75 0.77 0.78 0.64 0.63 0.63 0.55 0.54 0.67 0.68 0.48 0.71 0.73 0.82 0.81 0.87 0.83 0.83 1.00 0.85 0.65 0.63 0.45 0.48 0.69 0.69 0.78 0.84

25 0.61 0.48 0.61 0.64 0.64 0.51 0.62 0.72 0.52 0.58 0.56 0.44 0.38 0.62 0.66 0.55 0.70 0.63 0.79 0.69 0.77 0.80 0.72 0.85 1.00 0.61 0.53 0.49 0.50 0.77 0.69 0.81 0.82

26 0.61 0.73 0.66 0.67 0.76 0.70 0.63 0.71 0.63 0.60 0.57 0.41 0.57 0.75 0.79 0.78 0.67 0.74 0.66 0.68 0.67 0.74 0.69 0.65 0.61 1.00 0.75 0.58 0.65 0.46 0.52 0.58 0.65

27 0.82 0.83 0.74 0.72 0.75 0.74 0.74 0.73 0.78 0.90 0.83 0.60 0.69 0.67 0.69 0.64 0.70 0.72 0.72 0.74 0.69 0.70 0.70 0.63 0.53 0.75 1.00 0.73 0.68 0.54 0.47 0.54 0.66

28 0.66 0.66 0.64 0.62 0.64 0.54 0.55 0.58 0.68 0.73 0.71 0.42 0.46 0.64 0.57 0.53 0.68 0.59 0.55 0.51 0.56 0.62 0.61 0.45 0.49 0.58 0.73 1.00 0.78 0.60 0.46 0.48 0.58

29 0.57 0.63 0.66 0.71 0.73 0.54 0.65 0.59 0.67 0.69 0.68 0.36 0.32 0.85 0.75 0.71 0.71 0.77 0.66 0.53 0.56 0.67 0.62 0.48 0.50 0.65 0.68 0.78 1.00 0.53 0.43 0.52 0.61

30 0.68 0.55 0.61 0.60 0.63 0.47 0.65 0.69 0.62 0.58 0.48 0.34 0.31 0.52 0.51 0.52 0.70 0.53 0.68 0.56 0.70 0.73 0.69 0.69 0.77 0.46 0.54 0.60 0.53 1.00 0.75 0.76 0.70

31 0.61 0.60 0.69 0.56 0.59 0.54 0.65 0.70 0.54 0.47 0.41 0.54 0.42 0.50 0.45 0.41 0.60 0.53 0.65 0.58 0.73 0.68 0.70 0.69 0.69 0.52 0.47 0.46 0.43 0.75 1.00 0.74 0.68

32 0.68 0.58 0.70 0.67 0.69 0.49 0.66 0.79 0.56 0.60 0.55 0.50 0.40 0.65 0.61 0.55 0.61 0.63 0.72 0.61 0.68 0.75 0.74 0.78 0.81 0.58 0.54 0.48 0.52 0.76 0.74 1.00 0.74

33 0.67 0.53 0.68 0.75 0.75 0.69 0.74 0.72 0.73 0.66 0.66 0.50 0.47 0.74 0.78 0.58 0.80 0.82 0.86 0.71 0.76 0.82 0.70 0.84 0.82 0.65 0.66 0.58 0.61 0.70 0.68 0.74 1.00
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Table C. 5 Correlation Coefficient Matrix of transformed annual data of 33 stations 

 

 

 

 

 

 

 

Station # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1 1.00 0.83 0.82 0.67 0.71 0.68 0.70 0.75 0.71 0.92 0.80 0.50 0.55 0.62 0.59 0.59 0.59 0.63 0.70 0.72 0.72 0.68 0.74 0.72 0.63 0.62 0.84 0.66 0.56 0.68 0.62 0.69 0.67

2 0.83 1.00 0.80 0.61 0.67 0.65 0.72 0.70 0.71 0.77 0.70 0.63 0.60 0.62 0.65 0.59 0.61 0.65 0.61 0.70 0.72 0.65 0.75 0.64 0.51 0.71 0.80 0.65 0.61 0.61 0.64 0.60 0.54

3 0.82 0.80 1.00 0.75 0.81 0.82 0.69 0.71 0.63 0.81 0.75 0.56 0.64 0.74 0.62 0.56 0.62 0.73 0.75 0.76 0.77 0.70 0.77 0.78 0.65 0.67 0.76 0.64 0.66 0.64 0.70 0.72 0.68

4 0.67 0.61 0.75 1.00 0.92 0.79 0.75 0.69 0.70 0.74 0.71 0.56 0.52 0.79 0.73 0.64 0.78 0.84 0.82 0.74 0.70 0.76 0.67 0.75 0.67 0.69 0.74 0.66 0.74 0.61 0.56 0.66 0.77

5 0.71 0.67 0.81 0.92 1.00 0.82 0.80 0.77 0.71 0.75 0.71 0.52 0.51 0.80 0.74 0.73 0.73 0.83 0.81 0.75 0.73 0.80 0.76 0.78 0.66 0.76 0.76 0.66 0.75 0.64 0.58 0.69 0.76

6 0.68 0.65 0.82 0.79 0.82 1.00 0.69 0.63 0.68 0.73 0.68 0.55 0.66 0.67 0.65 0.57 0.72 0.75 0.73 0.74 0.74 0.73 0.72 0.74 0.53 0.73 0.79 0.60 0.62 0.52 0.54 0.51 0.72

7 0.70 0.72 0.69 0.75 0.80 0.69 1.00 0.72 0.83 0.66 0.64 0.51 0.38 0.65 0.71 0.61 0.71 0.76 0.78 0.71 0.78 0.75 0.74 0.80 0.63 0.63 0.74 0.55 0.65 0.66 0.65 0.66 0.74

8 0.75 0.70 0.71 0.69 0.77 0.63 0.72 1.00 0.71 0.71 0.63 0.58 0.46 0.65 0.66 0.61 0.65 0.67 0.68 0.69 0.79 0.83 0.84 0.79 0.73 0.71 0.77 0.59 0.59 0.71 0.69 0.79 0.72

9 0.71 0.71 0.63 0.70 0.71 0.68 0.83 0.71 1.00 0.70 0.60 0.41 0.34 0.64 0.72 0.60 0.73 0.70 0.68 0.63 0.71 0.70 0.67 0.68 0.54 0.63 0.79 0.68 0.68 0.63 0.53 0.56 0.75

10 0.92 0.77 0.81 0.74 0.75 0.73 0.66 0.71 0.70 1.00 0.91 0.56 0.61 0.70 0.66 0.61 0.66 0.71 0.75 0.75 0.69 0.68 0.70 0.69 0.63 0.62 0.91 0.72 0.66 0.59 0.50 0.62 0.69

11 0.80 0.70 0.75 0.71 0.71 0.68 0.64 0.63 0.60 0.91 1.00 0.60 0.63 0.70 0.66 0.51 0.64 0.76 0.71 0.76 0.67 0.66 0.66 0.68 0.59 0.57 0.85 0.71 0.67 0.50 0.43 0.56 0.68

12 0.50 0.63 0.56 0.56 0.52 0.55 0.51 0.58 0.41 0.56 0.60 1.00 0.69 0.45 0.43 0.27 0.51 0.47 0.50 0.62 0.53 0.55 0.54 0.51 0.44 0.42 0.58 0.46 0.37 0.37 0.56 0.52 0.49

13 0.55 0.60 0.64 0.52 0.51 0.66 0.38 0.46 0.34 0.61 0.63 0.69 1.00 0.46 0.34 0.26 0.39 0.49 0.51 0.67 0.50 0.35 0.55 0.52 0.41 0.51 0.62 0.44 0.29 0.28 0.42 0.39 0.48

14 0.62 0.62 0.74 0.79 0.80 0.67 0.65 0.65 0.64 0.70 0.70 0.45 0.46 1.00 0.82 0.71 0.71 0.82 0.81 0.73 0.61 0.66 0.68 0.71 0.63 0.75 0.69 0.65 0.85 0.54 0.49 0.65 0.75

15 0.59 0.65 0.62 0.73 0.74 0.65 0.71 0.66 0.72 0.66 0.66 0.43 0.34 0.82 1.00 0.76 0.83 0.83 0.78 0.68 0.72 0.80 0.69 0.74 0.68 0.79 0.72 0.57 0.74 0.53 0.48 0.61 0.79

16 0.59 0.59 0.56 0.64 0.73 0.57 0.61 0.61 0.60 0.61 0.51 0.27 0.26 0.71 0.76 1.00 0.67 0.66 0.60 0.55 0.60 0.68 0.63 0.54 0.57 0.78 0.67 0.55 0.71 0.55 0.42 0.55 0.58

17 0.59 0.61 0.62 0.78 0.73 0.72 0.71 0.65 0.73 0.66 0.64 0.51 0.39 0.71 0.83 0.67 1.00 0.80 0.80 0.74 0.81 0.83 0.73 0.75 0.71 0.66 0.73 0.68 0.70 0.71 0.61 0.60 0.81

18 0.63 0.65 0.73 0.84 0.83 0.75 0.76 0.67 0.70 0.71 0.76 0.47 0.49 0.82 0.83 0.66 0.80 1.00 0.83 0.74 0.73 0.80 0.70 0.76 0.65 0.73 0.73 0.60 0.77 0.56 0.53 0.63 0.83

19 0.70 0.61 0.75 0.82 0.81 0.73 0.78 0.68 0.68 0.75 0.71 0.50 0.51 0.81 0.78 0.60 0.80 0.83 1.00 0.79 0.72 0.77 0.67 0.85 0.80 0.66 0.74 0.56 0.67 0.68 0.64 0.72 0.86

20 0.72 0.70 0.76 0.74 0.75 0.74 0.71 0.69 0.63 0.75 0.76 0.62 0.67 0.73 0.68 0.55 0.74 0.74 0.79 1.00 0.83 0.69 0.75 0.82 0.72 0.68 0.74 0.55 0.58 0.58 0.57 0.64 0.73

21 0.72 0.72 0.77 0.70 0.73 0.74 0.78 0.79 0.71 0.69 0.67 0.53 0.50 0.61 0.72 0.60 0.81 0.73 0.72 0.83 1.00 0.84 0.86 0.88 0.79 0.68 0.74 0.59 0.58 0.73 0.74 0.70 0.75

22 0.68 0.65 0.70 0.76 0.80 0.73 0.75 0.83 0.70 0.68 0.66 0.55 0.35 0.66 0.80 0.68 0.83 0.80 0.77 0.69 0.84 1.00 0.82 0.83 0.80 0.75 0.73 0.64 0.68 0.75 0.69 0.76 0.83

23 0.74 0.75 0.77 0.67 0.76 0.72 0.74 0.84 0.67 0.70 0.66 0.54 0.55 0.68 0.69 0.63 0.73 0.70 0.67 0.75 0.86 0.82 1.00 0.83 0.71 0.70 0.74 0.65 0.64 0.74 0.70 0.74 0.70

24 0.72 0.64 0.78 0.75 0.78 0.74 0.80 0.79 0.68 0.69 0.68 0.51 0.52 0.71 0.74 0.54 0.75 0.76 0.85 0.82 0.88 0.83 0.83 1.00 0.86 0.67 0.69 0.50 0.54 0.69 0.68 0.80 0.83

25 0.63 0.51 0.65 0.67 0.66 0.53 0.63 0.73 0.54 0.63 0.59 0.44 0.41 0.63 0.68 0.57 0.71 0.65 0.80 0.72 0.79 0.80 0.71 0.86 1.00 0.62 0.57 0.52 0.53 0.74 0.68 0.83 0.81

26 0.62 0.71 0.67 0.69 0.76 0.73 0.63 0.71 0.63 0.62 0.57 0.42 0.51 0.75 0.79 0.78 0.66 0.73 0.66 0.68 0.68 0.75 0.70 0.67 0.62 1.00 0.76 0.59 0.65 0.48 0.52 0.58 0.66

27 0.84 0.80 0.76 0.74 0.76 0.79 0.74 0.77 0.79 0.91 0.85 0.58 0.62 0.69 0.72 0.67 0.73 0.73 0.74 0.74 0.74 0.73 0.74 0.69 0.57 0.76 1.00 0.73 0.69 0.57 0.49 0.57 0.69

28 0.66 0.65 0.64 0.66 0.66 0.60 0.55 0.59 0.68 0.72 0.71 0.46 0.44 0.65 0.57 0.55 0.68 0.60 0.56 0.55 0.59 0.64 0.65 0.50 0.52 0.59 0.73 1.00 0.79 0.62 0.47 0.49 0.60

29 0.56 0.61 0.66 0.74 0.75 0.62 0.65 0.59 0.68 0.66 0.67 0.37 0.29 0.85 0.74 0.71 0.70 0.77 0.67 0.58 0.58 0.68 0.64 0.54 0.53 0.65 0.69 0.79 1.00 0.56 0.43 0.52 0.62

30 0.68 0.61 0.64 0.61 0.64 0.52 0.66 0.71 0.63 0.59 0.50 0.37 0.28 0.54 0.53 0.55 0.71 0.56 0.68 0.58 0.73 0.75 0.74 0.69 0.74 0.48 0.57 0.62 0.56 1.00 0.78 0.79 0.68

31 0.62 0.64 0.70 0.56 0.58 0.54 0.65 0.69 0.53 0.50 0.43 0.56 0.42 0.49 0.48 0.42 0.61 0.53 0.64 0.57 0.74 0.69 0.70 0.68 0.68 0.52 0.49 0.47 0.43 0.78 1.00 0.75 0.65

32 0.69 0.60 0.72 0.66 0.69 0.51 0.66 0.79 0.56 0.62 0.56 0.52 0.39 0.65 0.61 0.55 0.60 0.63 0.72 0.64 0.70 0.76 0.74 0.80 0.83 0.58 0.57 0.49 0.52 0.79 0.75 1.00 0.73

33 0.67 0.54 0.68 0.77 0.76 0.72 0.74 0.72 0.75 0.69 0.68 0.49 0.48 0.75 0.79 0.58 0.81 0.83 0.86 0.73 0.75 0.83 0.70 0.83 0.81 0.66 0.69 0.60 0.62 0.68 0.65 0.73 1.00
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Table C. 6 Correlation Coefficients between the stations in REGION 1, and annual total REGION 1 (sub O represents the observed 

values) 

 

 

Table C. 7 Correlation Coefficients between the stations in REGION 2, and annual total REGION 2 (sub O represents the observed 

values) 

 

 

 

G1O LefkeO YesilirmakO

G1O 1.00 0.84 0.95

LefkeO 0.84 1.00 0.63

YesilirmakO 0.95 0.63 1.00

Groups/

Stations

GROUP 1

G2O AkdenizO CamlibelO LaptaO GirneO BeylerbeyiO BogazO TatlısuO EsentepeO GuzelyurtO GaziverenO ZumrutkoyO AlaykoyO

G2O 1.00 0.72 0.75 0.77 0.84 0.88 0.75 0.80 0.77 0.78 0.75 0.81 0.69

AkdenizO 0.72 1.00 0.83 0.81 0.64 0.69 0.62 0.70 0.71 0.89 0.79 0.82 0.66

CamlibelO 0.75 0.83 1.00 0.80 0.60 0.68 0.64 0.73 0.73 0.78 0.70 0.83 0.66

LaptaO 0.77 0.81 0.80 1.00 0.71 0.81 0.80 0.68 0.63 0.81 0.75 0.74 0.64

GirneO 0.84 0.64 0.60 0.71 1.00 0.92 0.70 0.75 0.68 0.73 0.68 0.72 0.62

BeylerbeyiO 0.88 0.69 0.68 0.81 0.92 1.00 0.78 0.80 0.70 0.74 0.69 0.75 0.64

BogazO 0.75 0.62 0.64 0.80 0.70 0.78 1.00 0.67 0.64 0.67 0.65 0.74 0.54

TatlısuO 0.80 0.70 0.73 0.68 0.75 0.80 0.67 1.00 0.84 0.67 0.64 0.74 0.55

EsentepeO 0.77 0.71 0.73 0.63 0.68 0.70 0.64 0.84 1.00 0.69 0.60 0.78 0.68

GuzelyurtO 0.78 0.89 0.78 0.81 0.73 0.74 0.67 0.67 0.69 1.00 0.91 0.90 0.73

GaziverenO 0.75 0.79 0.70 0.75 0.68 0.69 0.65 0.64 0.60 0.91 1.00 0.83 0.71

ZumrutkoyO 0.81 0.82 0.83 0.74 0.72 0.75 0.74 0.74 0.78 0.90 0.83 1.00 0.73

AlaykoyO 0.69 0.66 0.66 0.64 0.62 0.64 0.54 0.55 0.68 0.73 0.71 0.73 1.00

GROUP 2Groups/

Stations
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Table C. 8 Correlation Coefficients between the stations in REGION 3, and annual total REGION 3 (sub O represents the observed 

values) 

 

Table C. 9 Correlation Coefficients between the stations in REGION 4, and annual total REGION 4 (sub O represents the observed 

values) 

 

G3O ErcanO SerdarlıO DeğirmenlikO GecitkaleO GönendereO VadiliO BeyarmuduO AlevkayaO DortyolO LefkosaO

G3O 1.00 0.91 0.92 0.81 0.89 0.92 0.88 0.81 0.86 0.86 0.82

ErcanO 0.91 1.00 0.83 0.71 0.72 0.82 0.81 0.69 0.75 0.74 0.85

SerdarlıO 0.92 0.83 1.00 0.77 0.83 0.85 0.77 0.65 0.79 0.78 0.75

DeğirmenlikO 0.81 0.71 0.77 1.00 0.68 0.66 0.59 0.51 0.78 0.58 0.71

GecitkaleO 0.89 0.72 0.83 0.68 1.00 0.81 0.79 0.72 0.67 0.80 0.71

GönendereO 0.92 0.82 0.85 0.66 0.81 1.00 0.83 0.70 0.74 0.82 0.77

VadiliO 0.88 0.81 0.77 0.59 0.79 0.83 1.00 0.76 0.66 0.86 0.66

BeyarmuduO 0.81 0.69 0.65 0.51 0.72 0.70 0.76 1.00 0.68 0.71 0.53

AlevkayaO 0.86 0.75 0.79 0.78 0.67 0.74 0.66 0.68 1.00 0.65 0.65

DortyolO 0.86 0.74 0.78 0.58 0.80 0.82 0.86 0.71 0.65 1.00 0.61

LefkosaO 0.82 0.85 0.75 0.71 0.71 0.77 0.66 0.53 0.65 0.61 1.00

GROUP 3Groups/

Stations

G4O CayirovaO IskeleO MehmetcikO MagusaO SalamisO KantaraO ZiyametO DipkarpazO Yeni ErenkoyO

G4O 1.00 0.9 0.91 0.9 0.91 0.88 0.9 0.85 0.85 0.89

CayirovaO 0.9 1.00 0.84 0.87 0.87 0.77 0.77 0.70 0.73 0.68

IskeleO 0.91 0.84 1.00 0.82 0.83 0.80 0.83 0.73 0.68 0.75

MehmetcikO 0.9 0.87 0.82 1.00 0.83 0.72 0.83 0.69 0.70 0.74

MagusaO 0.91 0.87 0.83 0.83 1.00 0.85 0.78 0.69 0.69 0.78

SalamisO 0.88 0.77 0.80 0.72 0.85 1.00 0.72 0.77 0.69 0.81

KantaraO 0.9 0.77 0.83 0.83 0.78 0.72 1.00 0.69 0.70 0.79

ZiyametO 0.85 0.70 0.73 0.69 0.69 0.77 0.69 1.00 0.75 0.76

DipkarpazO 0.85 0.73 0.68 0.70 0.69 0.69 0.70 0.75 1.00 0.74

Yeni ErenkoyO 0.89 0.68 0.75 0.74 0.78 0.81 0.79 0.76 0.74 1.00

Groups/

Stations

GROUP 4
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Table C. 10 Correlation Coefficients between the stations in REGION 1, and annual total REGION 1 (sub T represents the 

transformed values) 

 

 

Table C. 11 Correlation Coefficients between the stations in REGION 2 and annual total REGION 2 (sub T represents the transformed 

values) 

 

 

G1T LefkeT YesilirmakT

G1T 1.00 0.58 0.49

LefkeT 0.58 1.00 0.69

YesilirmakT 0.49 0.69 1.00

Groups/

Stations

GROUP 1

G2T AkdenizT CamlibelT LaptaT GirneT BeylerbeyiT BogazT TatlısuT EsentepeT GuzelyurtT GaziverenT ZumrutkoyT AlaykoyT

G2T 1.00 0.72 0.74 0.78 0.86 0.88 0.79 0.80 0.78 0.78 0.76 0.83 0.7

AkdenizT 0.72 1.00 0.83 0.82 0.67 0.71 0.68 0.70 0.71 0.92 0.80 0.84 0.66

CamlibelT 0.74 0.83 1.00 0.80 0.61 0.67 0.65 0.72 0.71 0.77 0.70 0.80 0.65

LaptaT 0.78 0.82 0.80 1.00 0.75 0.81 0.82 0.69 0.63 0.81 0.75 0.76 0.64

GirneT 0.86 0.67 0.61 0.75 1.00 0.92 0.79 0.75 0.70 0.74 0.71 0.74 0.66

BeylerbeyiT 0.88 0.71 0.67 0.81 0.92 1.00 0.82 0.80 0.71 0.75 0.71 0.76 0.66

BogazT 0.79 0.68 0.65 0.82 0.79 0.82 1.00 0.69 0.68 0.73 0.68 0.79 0.60

TatlısuT 0.80 0.70 0.72 0.69 0.75 0.80 0.69 1.00 0.83 0.66 0.64 0.74 0.55

EsentepeT 0.78 0.71 0.71 0.63 0.70 0.71 0.68 0.83 1.00 0.70 0.60 0.79 0.68

GuzelyurtT 0.78 0.92 0.77 0.81 0.74 0.75 0.73 0.66 0.70 1.00 0.91 0.91 0.72

GaziverenT 0.76 0.80 0.70 0.75 0.71 0.71 0.68 0.64 0.60 0.91 1.00 0.85 0.71

ZumrutkoyT 0.83 0.84 0.80 0.76 0.74 0.76 0.79 0.74 0.79 0.91 0.85 1.00 0.73

AlaykoyT 0.7 0.66 0.65 0.64 0.66 0.66 0.60 0.55 0.68 0.72 0.71 0.73 1.00

Groups/

Stations

GROUP 2
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Table C. 12 Correlation Coefficients between the stations in REGION 3 and annual total REGION 3 (sub T represents the transformed 

values) 

 

 

 

 

 

 

 

 

 

 

G3T ErcanT SerdarlıT DeğirmenlikT GecitkaleT GönendereT VadiliT BeyarmuduT AlevkayaT DortyolT LefkosaT

G3T 1.00 0.79 0.77 0.69 0.78 0.84 0.83 0.82 0.78 0.80 0.77

ErcanT 0.79 1.00 0.82 0.71 0.71 0.82 0.81 0.73 0.75 0.75 0.85

SerdarlıT 0.77 0.82 1.00 0.76 0.83 0.83 0.78 0.68 0.79 0.79 0.74

DeğirmenlikT 0.69 0.71 0.76 1.00 0.67 0.66 0.60 0.55 0.78 0.58 0.71

GecitkaleT 0.78 0.71 0.83 0.67 1.00 0.80 0.80 0.74 0.66 0.81 0.70

GönendereT 0.84 0.82 0.83 0.66 0.80 1.00 0.83 0.74 0.73 0.83 0.77

VadiliT 0.83 0.81 0.78 0.60 0.80 0.83 1.00 0.79 0.66 0.86 0.67

BeyarmuduT 0.82 0.73 0.68 0.55 0.74 0.74 0.79 1.00 0.68 0.73 0.58

AlevkayaT 0.78 0.75 0.79 0.78 0.66 0.73 0.66 0.68 1.00 0.66 0.65

DortyolT 0.80 0.75 0.79 0.58 0.81 0.83 0.86 0.73 0.66 1.00 0.62

LefkosaT 0.77 0.85 0.74 0.71 0.70 0.77 0.67 0.58 0.65 0.62 1.00

Groups/

Stations

GROUP 3
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Table C. 13 Correlation Coefficients between the stations in REGION 4 and annual total REGION 4 (sub T represents the transformed 

values)  

G4T CayirovaT IskeleT MehmetcikT MagusaT SalamisT KantaraT ZiyametT DipkarpazT Yeni ErenkoyT

G4T 1.00 0.55 0.46 0.59 0.55 0.44 0.55 0.34 0.51 0.47

CayirovaT 0.55 1.00 0.84 0.86 0.88 0.79 0.79 0.73 0.74 0.70

IskeleT 0.46 0.84 1.00 0.82 0.83 0.80 0.83 0.75 0.69 0.76

MehmetcikT 0.59 0.86 0.82 1.00 0.83 0.71 0.84 0.74 0.70 0.74

MagusaT 0.55 0.88 0.83 0.83 1.00 0.86 0.79 0.69 0.68 0.80

SalamisT 0.44 0.79 0.80 0.71 0.86 1.00 0.73 0.74 0.68 0.83

KantaraT 0.55 0.79 0.83 0.84 0.79 0.73 1.00 0.71 0.69 0.79

ZiyametT 0.34 0.73 0.75 0.74 0.69 0.74 0.71 1.00 0.78 0.79

DipkarpazT 0.51 0.74 0.69 0.70 0.68 0.68 0.69 0.78 1.00 0.75

Yeni ErenkoyT 0.47 0.70 0.76 0.74 0.80 0.83 0.79 0.79 0.75 1.00

Groups/

Stations

GROUP 4
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D. ARIMA Model Selection 

D.1 Introduction 

In this Appendix, AIC and BIC values of 64 ARIMA combinations (including lag 3 

combinations)  for 3 representative stations from different regions and AIC anD BIC 

values of 27 ARIMA combinations (excluding lag 3 combinations) for 33 stations 

were given. Also, the most suitable ARIMA model for each station was highlighted 

in the tables. 
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Table D. 1 AIC, BIC values of all 64 ARIMA combinations for Akdeniz station 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,0) -37.1803 -33.9584

ARIMA(0,1,1) -33.7223 -28.8895

ARIMA(0,2,2) -7.26443 -0.820755

ARIMA(0,3,3) 21.4951 29.5497

ARIMA(0,0,1) -35.6916 -30.8588

ARIMA(0,0,2) -41.9155 -35.4719

ARIMA(0,0,3) -39.9173 -31.8627

ARIMA(0,1,0) -8.92044 -5.6986

ARIMA(0,2,0) 27.1285 30.3503

ARIMA(0,3,0) 64.2588 67.4806

ARIMA(0,1,2) -31.7947 -25.351

ARIMA(0,1,3) -36.7426 -28.688

ARIMA(0,2,1) -2.23489 2.59786

ARIMA(0,3,1) 30.7779 35.6106

ARIMA(0,2,3) -6.06962 1.98497

ARIMA(0,3,2) 20.3008 26.7445

ARIMA(1,0,0) -35.4314 -30.5987

ARIMA(1,1,1) -32.4966 -26.0529

ARIMA(1,2,2) -8.38818 -0.333587

ARIMA(1,3,3) 12.5204 22.1859

ARIMA(1,1,0) -14.4467 -9.61398

ARIMA(1,1,2) -32.274 -24.2194

ARIMA(1,1,3) ERROR ERROR

ARIMA(1,0,1) -42.1623 -35.7186

ARIMA(1,2,1) -9.34231 -2.89864

ARIMA(1,3,1) 19.9466 26.3903

ARIMA(1,0,2) -39.9197 -31.8652

ARIMA(1,0,3) -38.3001 -28.6346

ARIMA(1,2,0) 16.1136 20.9463

ARIMA(1,3,0) 50.7861 55.6188

ARIMA(1,2,3) -17.1907 -7.52521

ARIMA(1,3,2) 15.7421 23.7967

ARIMA(2,0,0) -36.5563 -30.1126

ARIMA(2,1,1) -32.7605 -24.7059

ARIMA(2,2,2) -18.1592 -8.49369

ARIMA(2,3,3) ERROR ERROR

ARIMA(2,0,1) -35.5025 -27.4479

ARIMA(2,0,2) -38.8455 -29.18

ARIMA(2,0,3) ERROR ERROR

ARIMA(2,1,0) -22.3843 -15.9407

ARIMA(2,2,0) -2.78952 3.65415

ARIMA(2,3,0) 24.8324 31.2761

ARIMA(2,1,2) -33.5603 -23.8948

ARIMA(2,1,3) ERROR ERROR

ARIMA(2,2,1) -20.1296 -12.075

ARIMA(2,3,1) 1.36576 9.42035

ARIMA(2,2,3) ERROR ERROR

ARIMA(2,3,2) 3.20829 12.8738

ARIMA(3,0,0) -34.5605 -26.5059

ARIMA(3,1,1) -30.7609 -21.0954

ARIMA(3,2,2) -16.3506 -5.0742

ARIMA(3,3,3) -6.85022 6.03713

ARIMA(3,0,1) -40.2609 -30.5954

ARIMA(3,0,2) -36.969 -25.6926

ARIMA(3,0,3) -40.4329 -27.5456

ARIMA(3,1,0) -20.4147 -12.3601

ARIMA(3,2,0) -2.73703 5.31756

ARIMA(3,3,0) 18.7097 26.7643

ARIMA(3,1,2) -31.7468 -20.4704

ARIMA(3,1,3) -32.59 -19.7026

ARIMA(3,2,1) -18.1727 -8.50723

ARIMA(3,3,1) 2.23731 11.9028

ARIMA(3,2,3) -26.792 -13.9047

ARIMA(3,3,2) 3.2239 14.5003
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Table D. 2 AIC, BIC values of all 64 ARIMA combinations for Lefkosa station 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,0) 407.918 411.14

ARIMA(0,1,1) 411.202 416.035

ARIMA(0,2,2) 420.226 426.669

ARIMA(0,3,3) 433.407 441.462

ARIMA(0,0,1) 407.93 412.763

ARIMA(0,0,2) 408.475 414.919

ARIMA(0,0,3) 410.202 418.256

ARIMA(0,1,0) 421.849 425.071

ARIMA(0,2,0) 460.671 463.893

ARIMA(0,3,0) 505.06 508.282

ARIMA(0,1,2) 410.865 417.309

ARIMA(0,1,3) 411.164 419.219

ARIMA(0,2,1) 424.851 429.684

ARIMA(0,3,1) 462.642 467.474

ARIMA(0,2,3) 422.023 430.077

ARIMA(0,3,2) 433.122 439.566

ARIMA(1,0,0) 407.336 412.169

ARIMA(1,1,1) 409.656 416.1

ARIMA(1,2,2) 421.365 429.42

ARIMA(1,3,3) 435.295 444.96

ARIMA(1,1,0) 415.74 420.572

ARIMA(1,1,2) 411.309 419.364

ARIMA(1,1,3) 412.571 422.237

ARIMA(1,0,1) 409.241 415.684

ARIMA(1,2,1) 419.552 425.996

ARIMA(1,3,1) 445.403 451.847

ARIMA(1,0,2) 410.321 418.376

ARIMA(1,0,3) 412.194 421.86

ARIMA(1,2,0) 439.969 444.801

ARIMA(1,3,0) 474.367 479.2

ARIMA(1,2,3) 422.767 432.432

ARIMA(1,3,2) 434.498 442.553

ARIMA(2,0,0) 408.704 415.148

ARIMA(2,1,1) 411.109 419.164

ARIMA(2,2,2) 421.267 430.932

ARIMA(2,3,3) ERROR ERROR

ARIMA(2,0,1) 410.607 418.662

ARIMA(2,0,2) 406.251 415.917

ARIMA(2,0,3) 411.74 423.017

ARIMA(2,1,0) 416.895 423.339

ARIMA(2,2,0) 432.82 439.263

ARIMA(2,3,0) 459.91 466.353

ARIMA(2,1,2) 413.097 422.762

ARIMA(2,1,3) 411.836 423.113

ARIMA(2,2,1) 419.234 427.289

ARIMA(2,3,1) 436.576 444.63

ARIMA(2,2,3) 422.84 434.116

ARIMA(2,3,2) 434.563 444.228

ARIMA(3,0,0) 410.345 418.4

ARIMA(3,1,1) 412.124 421.79

ARIMA(3,2,2) 422.649 433.926

ARIMA(3,3,3) 434.852 447.74

ARIMA(3,0,1) 409.083 418.748

ARIMA(3,0,2) 409.318 420.595

ARIMA(3,0,3) 410.789 423.676

ARIMA(3,1,0) 418.745 426.8

ARIMA(3,2,0) 431.06 439.115

ARIMA(3,3,0) 450.789 458.844

ARIMA(3,1,2) 408.326 419.602

ARIMA(3,1,3) 414.509 427.397

ARIMA(3,2,1) 420.711 430.377

ARIMA(3,3,1) 434.294 443.959

ARIMA(3,2,3) 424.645 437.532

ARIMA(3,3,2) 436.292 447.568
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Table D. 3 AIC, BIC values of all 64 ARIMA combinations for Dipkarpaz station 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,0) 300.656 303.878

ARIMA(0,1,1) 302.585 307.417

ARIMA(0,2,2) 324.306 330.749

ARIMA(0,3,3) 344.845 352.899

ARIMA(0,0,1) 302.651 307.484

ARIMA(0,0,2) 297.875 304.319

ARIMA(0,0,3) 297.778 305.832

ARIMA(0,1,0) 325.525 328.747

ARIMA(0,2,0) 361.687 364.909

ARIMA(0,3,0) 401.537 404.759

ARIMA(0,1,2) 304.582 311.026

ARIMA(0,1,3) ERROR ERROR

ARIMA(0,2,1) 329.814 334.646

ARIMA(0,3,1) 363.55 368.383

ARIMA(0,2,3) 325.982 334.037

ARIMA(0,3,2) 344.529 350.973

ARIMA(1,0,0) 302.652 307.485

ARIMA(1,1,1) 304.585 311.028

ARIMA(1,2,2) 325.257 333.312

ARIMA(1,3,3) 346.684 356.35

ARIMA(1,1,0) 319.302 324.135

ARIMA(1,1,2) 306.563 314.617

ARIMA(1,1,3) ERROR ERROR

ARIMA(1,0,1) 304.618 311.061

ARIMA(1,2,1) 324.004 330.447

ARIMA(1,3,1) 350.574 357.018

ARIMA(1,0,2) 302.186 310.24

ARIMA(1,0,3) 299.068 308.734

ARIMA(1,2,0) 346.872 351.705

ARIMA(1,3,0) 379.321 384.153

ARIMA(1,2,3) 321.046 330.712

ARIMA(1,3,2) 345.782 353.837

ARIMA(2,0,0) 304.163 310.607

ARIMA(2,1,1) 306.129 314.184

ARIMA(2,2,2) 310.601 320.266

ARIMA(2,3,3) 344.567 355.843

ARIMA(2,0,1) 299.988 308.043

ARIMA(2,0,2) 299.264 308.93

ARIMA(2,0,3) 301.148 312.425

ARIMA(2,1,0) 317.252 323.695

ARIMA(2,2,0) 335.833 342.276

ARIMA(2,3,0) 360.679 367.123

ARIMA(2,1,2) 308.112 317.778

ARIMA(2,1,3) ERROR ERROR

ARIMA(2,2,1) 319.639 327.693

ARIMA(2,3,1) 341.212 349.266

ARIMA(2,2,3) 327.181 338.457

ARIMA(2,3,2) 343.073 352.738

ARIMA(3,0,0) 305.747 313.801

ARIMA(3,1,1) 307.883 317.549

ARIMA(3,2,2) 337.685 348.961

ARIMA(3,3,3) 340.527 353.415

ARIMA(3,0,1) 297.227 306.892

ARIMA(3,0,2) 300.573 311.85

ARIMA(3,0,3) ERROR ERROR

ARIMA(3,1,0) 319.013 327.067

ARIMA(3,2,0) 336.345 344.4

ARIMA(3,3,0) 357.479 365.533

ARIMA(3,1,2) 301 312.277

ARIMA(3,1,3) 307.354 320.241

ARIMA(3,2,1) 321.044 330.71

ARIMA(3,3,1) 341.381 351.047

ARIMA(3,2,3) 328.515 341.402

ARIMA(3,3,2) 359.217 370.493
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Table D. 4 AIC and BIC values of all 27 ARIMA combinations for Akdeniz station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) -35.6916 -30.8588

ARIMA(0,0,2) -41.9155 -35.4719

ARIMA(0,1,0) -8.92044 -5.6986

ARIMA(0,2,0) 27.1285 30.3503

ARIMA(1,0,0) -35.4314 -30.5987

ARIMA(2,0,0) -36.5563 -30.1126

ARIMA(1,0,1) -42.1623 -35.7186

ARIMA(1,0,2) -39.9197 -31.8652

ARIMA(1,1,0) -14.4467 -9.61398

ARIMA(1,2,0) 16.1136 20.9463

ARIMA(2,1,0) -22.3843 -15.9407

ARIMA(0,1,1) -33.7223 -28.8895

ARIMA(0,1,2) -31.7947 -25.351

ARIMA(2,0,1) -35.5025 -27.4479

ARIMA(0,2,1) -2.23489 2.59786

ARIMA(2,0,2) -38.8455 -29.18

ARIMA(2,2,0) -2.78952 3.65415

ARIMA(0,2,2) -7.26443 -0.820755

ARIMA(1,1,2) -32.274 -24.2194

ARIMA(1,2,1) -9.34231 -2.89864

ARIMA(2,1,1) -32.7605 -24.7059

ARIMA(2,2,1) -20.1296 -12.075

ARIMA(2,1,2) -33.5603 -23.8948

ARIMA(1,2,2) -8.38818 -0.333587

ARIMA(0,0,0) -37.1803 -33.9584

ARIMA(1,1,1) -32.4966 -26.0529

ARIMA(2,2,2) -18.1592 -8.49369
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Table D. 5 AIC and BIC values of all 27 ARIMA combinations for Camlibel 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 195.784 200.617

ARIMA(0,0,2) 197.781 204.224

ARIMA(0,1,0) 218.776 221.998

ARIMA(0,2,0) 255.679 258.901

ARIMA(1,0,0) 195.784 200.617

ARIMA(2,0,0) 197.783 204.227

ARIMA(1,0,1) 197.784 204.228

ARIMA(1,0,2) 198.68 206.735

ARIMA(1,1,0) 210.211 215.044

ARIMA(1,2,0) 242.203 247.036

ARIMA(2,1,0) 200.26 206.703

ARIMA(0,1,1) 198.805 203.638

ARIMA(0,1,2) 200.744 207.188

ARIMA(2,0,1) 199.667 207.722

ARIMA(0,2,1) 221.853 226.685

ARIMA(2,0,2) 197.918 207.583

ARIMA(2,2,0) 215.778 222.222

ARIMA(0,2,2) 224.192 230.636

ARIMA(1,1,2) 197.005 205.06

ARIMA(1,2,1) 214.017 220.46

ARIMA(2,1,1) 200.909 208.964

ARIMA(2,2,1) 206.412 214.466

ARIMA(2,1,2) 197.502 207.167

ARIMA(1,2,2) 212.616 220.671

ARIMA(0,0,0) 193.784 197.006

ARIMA(1,1,1) 200.484 206.927

ARIMA(2,2,2) 205.223 214.889
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Table D. 6 AIC and BIC values of all 27 ARIMA combinations for Lapta station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 173.396 178.229

ARIMA(0,0,2) 167.102 173.545

ARIMA(0,1,0) 193.358 196.58

ARIMA(0,2,0) 227.699 230.921

ARIMA(1,0,0) 173.536 178.369

ARIMA(2,0,0) 174.117 180.56

ARIMA(1,0,1) 172.588 179.031

ARIMA(1,0,2) 166.391 174.446

ARIMA(1,1,0) 190.77 195.603

ARIMA(1,2,0) 219.443 224.276

ARIMA(2,1,0) 183.492 189.935

ARIMA(0,1,1) 179.573 184.406

ARIMA(0,1,2) 179.049 185.492

ARIMA(2,0,1) 168.949 177.004

ARIMA(0,2,1) 196.986 201.819

ARIMA(2,0,2) 167.37 177.035

ARIMA(2,2,0) 197.552 203.996

ARIMA(0,2,2) 194.571 201.015

ARIMA(1,1,2) 173.269 181.323

ARIMA(1,2,1) 195.486 201.93

ARIMA(2,1,1) 180.389 188.443

ARIMA(2,2,1) 186.845 194.899

ARIMA(2,1,2) 173.545 183.21

ARIMA(1,2,2) 196.519 204.574

ARIMA(0,0,0) 171.752 174.974

ARIMA(1,1,1) 181.315 187.758

ARIMA(2,2,2) 183.574 193.239
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Table D. 7 AIC and BIC values of all 27 ARIMA combinations for Girne station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 144.279 149.112

ARIMA(0,0,2) 141.412 147.856

ARIMA(0,1,0) 167.983 171.205

ARIMA(0,2,0) 207.111 210.332

ARIMA(1,0,0) 144.279 149.112

ARIMA(2,0,0) 146.025 152.469

ARIMA(1,0,1) 137.952 144.395

ARIMA(1,0,2) 138.853 146.907

ARIMA(1,1,0) 161.018 165.851

ARIMA(1,2,0) 188.638 193.471

ARIMA(2,1,0) 159.999 166.443

ARIMA(0,1,1) 146.355 151.187

ARIMA(0,1,2) 148.264 154.708

ARIMA(2,0,1) 137.777 145.831

ARIMA(0,2,1) 171.271 176.104

ARIMA(2,0,2) 140.116 149.781

ARIMA(2,2,0) 181.08 187.523

ARIMA(0,2,2) 165.271 171.715

ARIMA(1,1,2) 146.444 154.499

ARIMA(1,2,1) 164.979 171.422

ARIMA(2,1,1) 150.282 158.337

ARIMA(2,2,1) 164.39 172.445

ARIMA(2,1,2) 148.436 158.102

ARIMA(1,2,2) 166.074 174.129

ARIMA(0,0,0) 142.281 145.503

ARIMA(1,1,1) 148.326 154.769

ARIMA(2,2,2) 166.379 176.045
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Table D. 8 AIC and BIC values of all 27 ARIMA combinations for Beylerbeyi 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 319.129 323.962

ARIMA(0,0,2) 316.361 322.805

ARIMA(0,1,0) 342.18 345.402

ARIMA(0,2,0) 378.848 382.07

ARIMA(1,0,0) 319.129 323.962

ARIMA(2,0,0) 320.015 326.459

ARIMA(1,0,1) 321.129 327.573

ARIMA(1,0,2) 316.334 324.388

ARIMA(1,1,0) 337.464 342.297

ARIMA(1,2,0) 365.98 370.812

ARIMA(2,1,0) 333.618 340.062

ARIMA(0,1,1) 322.57 327.402

ARIMA(0,1,2) 324.228 330.672

ARIMA(2,0,1) 317.048 325.103

ARIMA(0,2,1) 344.657 349.49

ARIMA(2,0,2) 317.556 327.221

ARIMA(2,2,0) 353.096 359.54

ARIMA(0,2,2) 337.889 344.333

ARIMA(1,1,2) 322.649 330.703

ARIMA(1,2,1) 341.125 347.569

ARIMA(2,1,1) 325.504 333.559

ARIMA(2,2,1) 338.461 346.516

ARIMA(2,1,2) 324.724 334.39

ARIMA(1,2,2) 339.462 347.517

ARIMA(0,0,0) 317.129 320.351

ARIMA(1,1,1) 324.559 331.002

ARIMA(2,2,2) 340.282 349.948
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Table D. 9 AIC and BIC values of all 27 ARIMA combinations for Bogaz station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 52.6807 57.5135

ARIMA(0,0,2) 54.3135 60.7572

ARIMA(0,1,0) 69.0414 72.2632

ARIMA(0,2,0) 105.963 109.185

ARIMA(1,0,0) 52.5766 57.4093

ARIMA(2,0,0) 54.5272 60.9709

ARIMA(1,0,1) 54.7709 61.2146

ARIMA(1,0,2) 56.5336 64.5882

ARIMA(1,1,0) 63.9262 68.7589

ARIMA(1,2,0) 89.6106 94.4433

ARIMA(2,1,0) 63.8408 70.2845

ARIMA(0,1,1) 53.7413 58.574

ARIMA(0,1,2) 54.679 61.1227

ARIMA(2,0,1) 56.5188 64.5734

ARIMA(0,2,1) 70.9245 75.7573

ARIMA(2,0,2) 56.9887 66.6542

ARIMA(2,2,0) 79.886 86.3297

ARIMA(0,2,2) ERROR ERROR

ARIMA(1,1,2) 56.7224 64.777

ARIMA(1,2,1) 65.7734 72.2171

ARIMA(2,1,1) 56.5409 64.5955

ARIMA(2,2,1) 65.6259 73.6804

ARIMA(2,1,2) 58.725 68.3905

ARIMA(1,2,2) 55.6943 63.7489

ARIMA(0,0,0) 51.6597 54.8816

ARIMA(1,1,1) 54.5612 61.0049

ARIMA(2,2,2) 57.2883 66.9538
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Table D. 10 AIC and BIC values of all 27 ARIMA combinations for Tatlisu station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 487.537 492.369

ARIMA(0,0,2) 489.238 495.682

ARIMA(0,1,0) 500.97 504.192

ARIMA(0,2,0) 537.205 540.426

ARIMA(1,0,0) 487.155 491.987

ARIMA(2,0,0) 489.041 495.485

ARIMA(1,0,1) 483.14 489.584

ARIMA(1,0,2) 490.1 498.155

ARIMA(1,1,0) 496.732 501.565

ARIMA(1,2,0) 524.114 528.947

ARIMA(2,1,0) 494.551 500.994

ARIMA(0,1,1) 490.3 495.132

ARIMA(0,1,2) 488.425 494.869

ARIMA(2,0,1) 487.729 495.784

ARIMA(0,2,1) 504.941 509.774

ARIMA(2,0,2) 488.288 497.953

ARIMA(2,2,0) 506.784 513.227

ARIMA(0,2,2) 501.634 508.078

ARIMA(1,1,2) 490.812 498.867

ARIMA(1,2,1) 499.917 506.36

ARIMA(2,1,1) 492.943 500.997

ARIMA(2,2,1) 496.302 504.357

ARIMA(2,1,2) 492.552 502.217

ARIMA(1,2,2) 501.268 509.323

ARIMA(0,0,0) 488.204 491.426

ARIMA(1,1,1) 490.038 496.482

ARIMA(2,2,2) 498.847 508.513
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Table D. 11 AIC and BIC values of all 27 ARIMA combinations for Kantara 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 367.962 372.794

ARIMA(0,0,2) 367.094 373.538

ARIMA(0,1,0) 389.219 392.44

ARIMA(0,2,0) 424.47 427.692

ARIMA(1,0,0) 368.094 372.927

ARIMA(2,0,0) 367.825 374.269

ARIMA(1,0,1) 369.558 376.002

ARIMA(1,0,2) 365.871 373.926

ARIMA(1,1,0) 386.212 391.045

ARIMA(1,2,0) 413.978 418.811

ARIMA(2,1,0) 382.026 388.47

ARIMA(0,1,1) 368.137 372.969

ARIMA(0,1,2) 369.831 376.275

ARIMA(2,0,1) 365.745 373.8

ARIMA(0,2,1) 393.639 398.472

ARIMA(2,0,2) 367.966 377.631

ARIMA(2,2,0) 403.892 410.335

ARIMA(0,2,2) 390.35 396.794

ARIMA(1,1,2) 370.454 378.509

ARIMA(1,2,1) 391.175 397.618

ARIMA(2,1,1) 369.264 377.319

ARIMA(2,2,1) 384.09 392.145

ARIMA(2,1,2) 371.102 380.768

ARIMA(1,2,2) 392.248 400.302

ARIMA(0,0,0) 366.286 369.508

ARIMA(1,1,1) 370.042 376.485

ARIMA(2,2,2) 394.616 404.281
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Table D. 12 AIC and BIC values of all 27 ARIMA combinations for Esentepe 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 355.973 360.806

ARIMA(0,0,2) 356.799 363.243

ARIMA(0,1,0) 373.705 376.927

ARIMA(0,2,0) 410.051 413.272

ARIMA(1,0,0) 356.402 361.234

ARIMA(2,0,0) 357.727 364.171

ARIMA(1,0,1) 356.971 363.414

ARIMA(1,0,2) 358.736 366.79

ARIMA(1,1,0) 370.806 375.639

ARIMA(1,2,0) 398.114 402.946

ARIMA(2,1,0) 366.882 373.325

ARIMA(0,1,1) 357.123 361.956

ARIMA(0,1,2) 357.657 364.101

ARIMA(2,0,1) 358.761 366.816

ARIMA(0,2,1) 378.806 383.638

ARIMA(2,0,2) 354.23 363.895

ARIMA(2,2,0) 382.223 388.667

ARIMA(0,2,2) 377.026 383.469

ARIMA(1,1,2) 358.569 366.624

ARIMA(1,2,1) 372.976 379.419

ARIMA(2,1,1) 368.601 376.655

ARIMA(2,2,1) 369.157 377.212

ARIMA(2,1,2) 365.934 375.6

ARIMA(1,2,2) 373.795 381.85

ARIMA(0,0,0) 355.64 358.862

ARIMA(1,1,1) 357.838 364.281

ARIMA(2,2,2) 370.763 380.429
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Table D. 13 AIC and BIC values of all 27 ARIMA combinations for Guzelyurt 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 19.2944 24.1271

ARIMA(0,0,2) 17.4357 23.8793

ARIMA(0,1,0) 43.778 46.9999

ARIMA(0,2,0) 80.1323 83.3542

ARIMA(1,0,0) 19.3157 24.1484

ARIMA(2,0,0) 19.7498 26.1935

ARIMA(1,0,1) 14.7803 21.224

ARIMA(1,0,2) 16.4454 24.5

ARIMA(1,1,0) 38.4226 43.2553

ARIMA(1,2,0) 67.4475 72.2802

ARIMA(2,1,0) 34.0234 40.4671

ARIMA(0,1,1) 20.3683 25.201

ARIMA(0,1,2) 22.3669 28.8105

ARIMA(2,0,1) 15.9705 24.0251

ARIMA(0,2,1) 50.9698 55.8025

ARIMA(2,0,2) 17.6464 27.3119

ARIMA(2,2,0) 53.6921 60.1358

ARIMA(0,2,2) 47.5979 54.0416

ARIMA(1,1,2) 22.9039 30.9585

ARIMA(1,2,1) 45.2727 51.7164

ARIMA(2,1,1) 22.4971 30.5517

ARIMA(2,2,1) 39.4213 47.4759

ARIMA(2,1,2) 23.4222 33.0877

ARIMA(1,2,2) 46.9699 55.0245

ARIMA(0,0,0) 17.352 20.5738

ARIMA(1,1,1) 22.0184 28.462

ARIMA(2,2,2) 40.9919 50.6574
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Table D. 14 AIC and BIC values of all 27 ARIMA combinations for Gaziveren 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 341.482 346.315

ARIMA(0,0,2) 341.841 348.285

ARIMA(0,1,0) 367.166 370.388

ARIMA(0,2,0) 405.058 408.28

ARIMA(1,0,0) 341.543 346.376

ARIMA(2,0,0) 342.882 349.326

ARIMA(1,0,1) 337.942 344.385

ARIMA(1,0,2) 339.928 347.983

ARIMA(1,1,0) 360.153 364.986

ARIMA(1,2,0) 390.414 395.246

ARIMA(2,1,0) 354.918 361.362

ARIMA(0,1,1) 341.476 346.309

ARIMA(0,1,2) 343.259 349.703

ARIMA(2,0,1) 344.755 352.809

ARIMA(0,2,1) 373.512 378.345

ARIMA(2,0,2) 339.83 349.495

ARIMA(2,2,0) 375.615 382.059

ARIMA(0,2,2) 368.263 374.707

ARIMA(1,1,2) 338.664 346.719

ARIMA(1,2,1) 366.499 372.943

ARIMA(2,1,1) 343.812 351.867

ARIMA(2,2,1) 358.033 366.087

ARIMA(2,1,2) 345.487 355.152

ARIMA(1,2,2) 367.715 375.77

ARIMA(0,0,0) 339.735 342.957

ARIMA(1,1,1) 342.882 349.325

ARIMA(2,2,2) 358.956 368.622
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Table D. 15 AIC and BIC values of all 27 ARIMA combinations for Lefke station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 17.3923 22.2251

ARIMA(0,0,2) 18.6474 25.0911

ARIMA(0,1,0) 36.8792 40.1011

ARIMA(0,2,0) 71.3588 74.5806

ARIMA(1,0,0) 17.5577 22.3904

ARIMA(2,0,0) 18.4257 24.8694

ARIMA(1,0,1) 18.7958 25.2395

ARIMA(1,0,2) 20.639 28.6936

ARIMA(1,1,0) 34.0413 38.874

ARIMA(1,2,0) 61.2456 66.0783

ARIMA(2,1,0) 30.523 36.9667

ARIMA(0,1,1) 15.9025 20.7353

ARIMA(0,1,2) 17.5824 24.026

ARIMA(2,0,1) 20.3959 28.4505

ARIMA(0,2,1) 41.4104 46.2431

ARIMA(2,0,2) 17.7815 27.447

ARIMA(2,2,0) 54.9665 61.4102

ARIMA(0,2,2) 37.3406 43.7843

ARIMA(1,1,2) 18.6717 26.7263

ARIMA(1,2,1) 39.0441 45.4878

ARIMA(2,1,1) 16.612 24.6666

ARIMA(2,2,1) 34.8106 42.8652

ARIMA(2,1,2) 18.5973 28.2628

ARIMA(1,2,2) 39.3387 47.3933

ARIMA(0,0,0) 15.9899 19.2118

ARIMA(1,1,1) 17.8828 24.3265

ARIMA(2,2,2) 34.9678 44.6333
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Table D. 16 AIC and BIC values of all 27 ARIMA combinations for Yesilirmak 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) -141.554 -136.721

ARIMA(0,0,2) -139.767 -133.323

ARIMA(0,1,0) -130.229 -127.007

ARIMA(0,2,0) -98.7287 -95.5069

ARIMA(1,0,0) -141.633 -136.8

ARIMA(2,0,0) -139.836 -133.392

ARIMA(1,0,1) -139.756 -133.313

ARIMA(1,0,2) -137.767 -129.713

ARIMA(1,1,0) -130.739 -125.906

ARIMA(1,2,0) -107.569 -102.736

ARIMA(2,1,0) -131.119 -124.675

ARIMA(0,1,1) -139.753 -134.92

ARIMA(0,1,2) -141.518 -135.074

ARIMA(2,0,1) -140.965 -132.91

ARIMA(0,2,1) -126.618 -121.785

ARIMA(2,0,2) -138.853 -129.187

ARIMA(2,2,0) -111.881 -105.438

ARIMA(0,2,2) -126.989 -120.545

ARIMA(1,1,2) -139.637 -131.583

ARIMA(1,2,1) -126.297 -119.853

ARIMA(2,1,1) -139.888 -131.834

ARIMA(2,2,1) -127.802 -119.747

ARIMA(2,1,2) -138.533 -128.867

ARIMA(1,2,2) -127.85 -119.795

ARIMA(0,0,0) -139.24 -136.019

ARIMA(1,1,1) -141.356 -134.912

ARIMA(2,2,2) -137.961 -128.295
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Table D. 17 AIC and BIC values of all 27 ARIMA combinations for Ercan station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 480.168 485

ARIMA(0,0,2) 481.594 488.038

ARIMA(0,1,0) 496.326 499.548

ARIMA(0,2,0) 529.633 532.854

ARIMA(1,0,0) 481.149 485.982

ARIMA(2,0,0) 481.373 487.817

ARIMA(1,0,1) 481.714 488.157

ARIMA(1,0,2) 482.311 490.365

ARIMA(1,1,0) 496.076 500.908

ARIMA(1,2,0) 521.837 526.669

ARIMA(2,1,0) 492.521 498.965

ARIMA(0,1,1) 489.708 494.541

ARIMA(0,1,2) 487.416 493.86

ARIMA(2,0,1) 482.16 490.215

ARIMA(0,2,1) 498.957 503.79

ARIMA(2,0,2) 484.099 493.765

ARIMA(2,2,0) 512.06 518.504

ARIMA(0,2,2) 497.469 503.912

ARIMA(1,1,2) 488.871 496.925

ARIMA(1,2,1) 499.243 505.687

ARIMA(2,1,1) 490.239 498.293

ARIMA(2,2,1) 499.052 507.106

ARIMA(2,1,2) 490.86 500.525

ARIMA(1,2,2) 498.934 506.988

ARIMA(0,0,0) 481.196 484.417

ARIMA(1,1,1) 489.176 495.62

ARIMA(2,2,2) 500.606 510.271
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Table D. 18 AIC and BIC values of all 27 ARIMA combinations for Serdarli 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 72.0329 76.8656

ARIMA(0,0,2) 72.5486 78.9923

ARIMA(0,1,0) 92.5048 95.7266

ARIMA(0,2,0) 129.911 133.133

ARIMA(1,0,0) 72.1331 76.9659

ARIMA(2,0,0) 73.4222 79.8658

ARIMA(1,0,1) 72.6994 79.1431

ARIMA(1,0,2) 74.2822 82.3368

ARIMA(1,1,0) 88.2554 93.0882

ARIMA(1,2,0) 118.012 122.845

ARIMA(2,1,0) 82.28 88.7237

ARIMA(0,1,1) 77.3912 82.2239

ARIMA(0,1,2) 78.341 84.7847

ARIMA(2,0,1) 74.0628 82.1174

ARIMA(0,2,1) 94.5657 99.3984

ARIMA(2,0,2) 76.0836 85.7491

ARIMA(2,2,0) 99.467 105.911

ARIMA(0,2,2) 81.044 87.4877

ARIMA(1,1,2) 79.4623 87.5168

ARIMA(1,2,1) 90.2429 96.6866

ARIMA(2,1,1) 80.2014 88.256

ARIMA(2,2,1) 87.3946 95.4492

ARIMA(2,1,2) 81.1032 90.7687

ARIMA(1,2,2) 82.7087 90.7633

ARIMA(0,0,0) 70.4086 73.6305

ARIMA(1,1,1) 78.5254 84.9691

ARIMA(2,2,2) 89.1154 98.7809
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Table D. 19 AIC and BIC values of all 27 ARIMA combinations for Degirmenlik 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 456.544 461.377

ARIMA(0,0,2) 456.439 462.882

ARIMA(0,1,0) 474.117 477.339

ARIMA(0,2,0) 508.652 511.874

ARIMA(1,0,0) 457.506 462.339

ARIMA(2,0,0) 457.092 463.536

ARIMA(1,0,1) 457.411 463.855

ARIMA(1,0,2) 458.428 466.483

ARIMA(1,1,0) 473.085 477.918

ARIMA(1,2,0) 500.294 505.127

ARIMA(2,1,0) 466.91 473.353

ARIMA(0,1,1) 465.49 470.323

ARIMA(0,1,2) 465.13 471.574

ARIMA(2,0,1) 457.999 466.053

ARIMA(0,2,1) 476.219 481.052

ARIMA(2,0,2) 460.171 469.837

ARIMA(2,2,0) 487.176 493.62

ARIMA(0,2,2) 468.453 474.897

ARIMA(1,1,2) 466.091 474.146

ARIMA(1,2,1) 475.294 481.738

ARIMA(2,1,1) 464.35 472.405

ARIMA(2,2,1) 473.384 481.438

ARIMA(2,1,2) 466.319 475.985

ARIMA(1,2,2) 469.946 478.001

ARIMA(0,0,0) 456.86 460.082

ARIMA(1,1,1) 466.221 472.665

ARIMA(2,2,2) 466.414 476.079
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Table D. 20 AIC and BIC values of all 27 ARIMA combinations for Gecitkale 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 567.391 572.224

ARIMA(0,0,2) 569.175 575.618

ARIMA(0,1,0) 586.288 589.51

ARIMA(0,2,0) 623.721 626.942

ARIMA(1,0,0) 567.57 572.403

ARIMA(2,0,0) 569.338 575.782

ARIMA(1,0,1) 569.292 575.735

ARIMA(1,0,2) 567.302 575.356

ARIMA(1,1,0) 581.86 586.693

ARIMA(1,2,0) 609.88 614.713

ARIMA(2,1,0) 579.134 585.577

ARIMA(0,1,1) 569.149 573.982

ARIMA(0,1,2) 570.053 576.497

ARIMA(2,0,1) 571.17 579.225

ARIMA(0,2,1) 589.433 594.266

ARIMA(2,0,2) 568.49 578.155

ARIMA(2,2,0) 598.73 605.174

ARIMA(0,2,2) 584.463 590.907

ARIMA(1,1,2) 573.196 581.25

ARIMA(1,2,1) 604.335 610.779

ARIMA(2,1,1) 571.722 579.776

ARIMA(2,2,1) 581.129 589.183

ARIMA(2,1,2) 575.113 584.778

ARIMA(1,2,2) 585.837 593.892

ARIMA(0,0,0) 566.273 569.495

ARIMA(1,1,1) 581.61 588.054

ARIMA(2,2,2) 590.166 599.832
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Table D. 21 AIC and BIC values of all 27 ARIMA combinations for Gonendere 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 509.401 514.234

ARIMA(0,0,2) 511.259 517.703

ARIMA(0,1,0) 526.169 529.391

ARIMA(0,2,0) 562.217 565.439

ARIMA(1,0,0) 509.712 514.545

ARIMA(2,0,0) 511.403 517.847

ARIMA(1,0,1) 511.255 517.698

ARIMA(1,0,2) 511.593 519.648

ARIMA(1,1,0) 523.613 528.446

ARIMA(1,2,0) 549.747 554.579

ARIMA(2,1,0) 522.484 528.928

ARIMA(0,1,1) 515.328 520.161

ARIMA(0,1,2) 513.984 520.428

ARIMA(2,0,1) 510.603 518.658

ARIMA(0,2,1) 528.093 532.926

ARIMA(2,0,2) 507.912 517.578

ARIMA(2,2,0) 538.435 544.878

ARIMA(0,2,2) 540.11 546.553

ARIMA(1,1,2) 515.927 523.981

ARIMA(1,2,1) 525.73 532.173

ARIMA(2,1,1) 516.158 524.213

ARIMA(2,2,1) 525.525 533.58

ARIMA(2,1,2) 518.674 528.339

ARIMA(1,2,2) ERROR ERROR

ARIMA(0,0,0) 509.375 512.597

ARIMA(1,1,1) 514.274 520.717

ARIMA(2,2,2) 524.172 533.838
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Table D. 22 AIC and BIC values of all 27 ARIMA combinations for Vadili station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 276.07 280.903

ARIMA(0,0,2) 276.899 283.343

ARIMA(0,1,0) 293.79 297.011

ARIMA(0,2,0) 326.381 329.602

ARIMA(1,0,0) 276.913 281.746

ARIMA(2,0,0) 276.3 282.743

ARIMA(1,0,1) 277.474 283.918

ARIMA(1,0,2) 270.973 279.028

ARIMA(1,1,0) 293.357 298.19

ARIMA(1,2,0) 319.3 324.133

ARIMA(2,1,0) 289.166 295.61

ARIMA(0,1,1) 281.345 286.178

ARIMA(0,1,2) 279.521 285.965

ARIMA(2,0,1) 269.263 277.318

ARIMA(0,2,1) 305.26 310.092

ARIMA(2,0,2) 271.258 280.924

ARIMA(2,2,0) 309.79 316.234

ARIMA(0,2,2) 306.856 313.3

ARIMA(1,1,2) 276.924 284.979

ARIMA(1,2,1) 304.181 310.624

ARIMA(2,1,1) 285.079 293.134

ARIMA(2,2,1) 292.645 300.699

ARIMA(2,1,2) 281.06 290.725

ARIMA(1,2,2) 298.73 306.785

ARIMA(0,0,0) 276.303 279.525

ARIMA(1,1,1) 283.326 289.77

ARIMA(2,2,2) 294.643 304.309
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Table D. 23 AIC and BIC values of all 27 ARIMA combinations for Beyarmudu 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 22.4104 27.2431

ARIMA(0,0,2) 23.6193 30.063

ARIMA(0,1,0) 44.9113 48.1331

ARIMA(0,2,0) 83.0592 86.281

ARIMA(1,0,0) 22.411 27.2438

ARIMA(2,0,0) 24.1854 30.629

ARIMA(1,0,1) 23.143 29.5867

ARIMA(1,0,2) 24.4063 32.4609

ARIMA(1,1,0) 38.7289 43.5617

ARIMA(1,2,0) 71.1439 75.9766

ARIMA(2,1,0) 27.7778 34.2214

ARIMA(0,1,1) 18.8371 23.6698

ARIMA(0,1,2) 20.5135 26.9571

ARIMA(2,0,1) 23.8917 31.9463

ARIMA(0,2,1) 47.5681 52.4009

ARIMA(2,0,2) 25.7564 35.4219

ARIMA(2,2,0) 46.6287 53.0724

ARIMA(0,2,2) 33.0905 39.5342

ARIMA(1,1,2) 22.5876 30.6422

ARIMA(1,2,1) 42.0568 48.5005

ARIMA(2,1,1) 29.7172 37.7718

ARIMA(2,2,1) 29.7714 37.826

ARIMA(2,1,2) 23.0325 32.698

ARIMA(1,2,2) 34.7046 42.7591

ARIMA(0,0,0) 20.4147 23.6365

ARIMA(1,1,1) 20.7201 27.1638

ARIMA(2,2,2) 21.3567 31.0222
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Table D. 24 AIC and BIC values of all 27 ARIMA combinations for Cayirova 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 209.705 214.537

ARIMA(0,0,2) 211.22 217.663

ARIMA(0,1,0) 233.661 236.883

ARIMA(0,2,0) 272.291 275.513

ARIMA(1,0,0) 209.705 214.538

ARIMA(2,0,0) 211.588 218.031

ARIMA(1,0,1) 208.797 215.241

ARIMA(1,0,2) 212.948 221.002

ARIMA(1,1,0) 225.792 230.625

ARIMA(1,2,0) 256.492 261.325

ARIMA(2,1,0) 220.477 226.92

ARIMA(0,1,1) 209.412 214.245

ARIMA(0,1,2) 211.396 217.84

ARIMA(2,0,1) 213.5 221.554

ARIMA(0,2,1) 235.751 240.583

ARIMA(2,0,2) 212.022 221.687

ARIMA(2,2,0) 233.138 239.581

ARIMA(0,2,2) 218.855 225.299

ARIMA(1,1,2) 212.253 220.308

ARIMA(1,2,1) 227.858 234.302

ARIMA(2,1,1) 221.628 229.683

ARIMA(2,2,1) 223.334 231.389

ARIMA(2,1,2) 214.418 224.084

ARIMA(1,2,2) 220.758 228.813

ARIMA(0,0,0) 207.711 210.933

ARIMA(1,1,1) 211.407 217.851

ARIMA(2,2,2) 224.363 234.028
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Table D. 25 AIC and BIC values of all 27 ARIMA combinations for Iskele station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 297.72 302.553

ARIMA(0,0,2) 298.043 304.486

ARIMA(0,1,0) 319.567 322.789

ARIMA(0,2,0) 356.159 359.381

ARIMA(1,0,0) 297.744 302.577

ARIMA(2,0,0) 299.117 305.561

ARIMA(1,0,1) 299.582 306.026

ARIMA(1,0,2) 293.906 301.961

ARIMA(1,1,0) 313.99 318.823

ARIMA(1,2,0) 342.178 347.011

ARIMA(2,1,0) 311.16 317.604

ARIMA(0,1,1) 297.828 302.661

ARIMA(0,1,2) 299.722 306.166

ARIMA(2,0,1) 294.277 302.331

ARIMA(0,2,1) 328.613 333.446

ARIMA(2,0,2) 294.704 304.37

ARIMA(2,2,0) 328.052 334.496

ARIMA(0,2,2) 326.638 333.082

ARIMA(1,1,2) 300.857 308.912

ARIMA(1,2,1) 321.438 327.882

ARIMA(2,1,1) 301.301 309.355

ARIMA(2,2,1) 313.338 321.392

ARIMA(2,1,2) 302.355 312.02

ARIMA(1,2,2) 322.036 330.091

ARIMA(0,0,0) 295.828 299.049

ARIMA(1,1,1) 299.749 306.193

ARIMA(2,2,2) 314.857 324.522
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Table D. 26 AIC and BIC values of all 27 ARIMA combinations for Mehmetcik 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 172.026 176.859

ARIMA(0,0,2) 171.267 177.71

ARIMA(0,1,0) 191.635 194.856

ARIMA(0,2,0) 226.227 229.449

ARIMA(1,0,0) 172.1 176.933

ARIMA(2,0,0) 173.778 180.221

ARIMA(1,0,1) 167.881 174.325

ARIMA(1,0,2) 169.768 177.823

ARIMA(1,1,0) 187.307 192.139

ARIMA(1,2,0) 215.415 220.248

ARIMA(2,1,0) 183.217 189.661

ARIMA(0,1,1) 171.872 176.705

ARIMA(0,1,2) 173.526 179.97

ARIMA(2,0,1) 169.866 177.92

ARIMA(0,2,1) 198.357 203.19

ARIMA(2,0,2) 171.259 180.925

ARIMA(2,2,0) 198.478 204.922

ARIMA(0,2,2) 195.836 202.28

ARIMA(1,1,2) 172.191 180.245

ARIMA(1,2,1) 193.128 199.572

ARIMA(2,1,1) 174.41 182.465

ARIMA(2,2,1) 185.17 193.225

ARIMA(2,1,2) 174.225 183.89

ARIMA(1,2,2) 195.016 203.07

ARIMA(0,0,0) 170.429 173.651

ARIMA(1,1,1) 173.295 179.738

ARIMA(2,2,2) 183.502 193.168



 

 

 

162 

Table D. 27 AIC and BIC values of all 27 ARIMA combinations for Magusa 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 35.1744 40.0071

ARIMA(0,0,2) 34.3836 40.8273

ARIMA(0,1,0) 52.969 56.1908

ARIMA(0,2,0) 84.8101 88.0319

ARIMA(1,0,0) 37.8324 42.6652

ARIMA(2,0,0) 38.3159 44.7596

ARIMA(1,0,1) 34.6364 41.0801

ARIMA(1,0,2) 31.4379 39.4925

ARIMA(1,1,0) 52.5966 57.4293

ARIMA(1,2,0) 79.139 83.9717

ARIMA(2,1,0) 46.9655 53.4092

ARIMA(0,1,1) 39.7857 44.6184

ARIMA(0,1,2) 36.8613 43.3049

ARIMA(2,0,1) 36.3341 44.3887

ARIMA(0,2,1) 55.0737 59.9064

ARIMA(2,0,2) 33.0312 42.6967

ARIMA(2,2,0) 60.4593 66.9029

ARIMA(0,2,2) 47.8688 54.3124

ARIMA(1,1,2) 36.2568 44.3114

ARIMA(1,2,1) 54.664 61.1077

ARIMA(2,1,1) 46.3698 54.4243

ARIMA(2,2,1) 50.7244 58.779

ARIMA(2,1,2) 37.9157 47.5812

ARIMA(1,2,2) 48.8465 56.9011

ARIMA(0,0,0) 38.184 41.4058

ARIMA(1,1,1) 39.5461 45.9898

ARIMA(2,2,2) 49.0678 58.7333
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Table D. 28 AIC and BIC values of all 27 ARIMA combinations for Salamis 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 186.775 191.608

ARIMA(0,0,2) 188.733 195.177

ARIMA(0,1,0) 207.598 210.82

ARIMA(0,2,0) 245.64 248.862

ARIMA(1,0,0) 186.79 191.623

ARIMA(2,0,0) 188.74 195.184

ARIMA(1,0,1) 188.738 195.182

ARIMA(1,0,2) 187.621 195.676

ARIMA(1,1,0) 200.842 205.674

ARIMA(1,2,0) 229.239 234.072

ARIMA(2,1,0) 198.597 205.041

ARIMA(0,1,1) 186.735 191.567

ARIMA(0,1,2) 188.533 194.977

ARIMA(2,0,1) 188.542 196.596

ARIMA(0,2,1) 215.743 220.575

ARIMA(2,0,2) 188.306 197.971

ARIMA(2,2,0) 217.418 223.861

ARIMA(0,2,2) 212.656 219.099

ARIMA(1,1,2) 189.916 197.97

ARIMA(1,2,1) 208.581 215.025

ARIMA(2,1,1) 190.729 198.783

ARIMA(2,2,1) 200.994 209.049

ARIMA(2,1,2) 191.895 201.561

ARIMA(1,2,2) 207.226 215.281

ARIMA(0,0,0) 185.024 188.246

ARIMA(1,1,1) 188.734 195.178

ARIMA(2,2,2) 202.916 212.581
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Table D. 29 AIC and BIC values of all 27 ARIMA combinations for Alevkaya 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 468.47 473.303

ARIMA(0,0,2) 468.709 475.152

ARIMA(0,1,0) 488.147 491.369

ARIMA(0,2,0) 525.573 528.795

ARIMA(1,0,0) 468.502 473.335

ARIMA(2,0,0) 469.867 476.31

ARIMA(1,0,1) 470.003 476.447

ARIMA(1,0,2) 469.755 477.809

ARIMA(1,1,0) 483.591 488.423

ARIMA(1,2,0) 513.321 518.153

ARIMA(2,1,0) 476.443 482.887

ARIMA(0,1,1) 476.17 481.003

ARIMA(0,1,2) 477.954 484.397

ARIMA(2,0,1) 468.954 477.009

ARIMA(0,2,1) 505.157 509.99

ARIMA(2,0,2) 471.034 480.7

ARIMA(2,2,0) 492.492 498.936

ARIMA(0,2,2) 475.621 482.065

ARIMA(1,1,2) 477.718 485.772

ARIMA(1,2,1) 486.378 492.822

ARIMA(2,1,1) 477.894 485.948

ARIMA(2,2,1) 484.138 492.193

ARIMA(2,1,2) 477.922 487.587

ARIMA(1,2,2) 504.213 512.268

ARIMA(0,0,0) 466.671 469.893

ARIMA(1,1,1) 478.093 484.537

ARIMA(2,2,2) 485.694 495.359
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Table D. 30 AIC and BIC values of all 27 ARIMA combinations for Zumrutkoy 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 49.022 53.8548

ARIMA(0,0,2) 50.1084 56.5521

ARIMA(0,1,0) 71.8621 75.0839

ARIMA(0,2,0) 109.33 112.552

ARIMA(1,0,0) 49.0229 53.8557

ARIMA(2,0,0) 50.3794 56.8231

ARIMA(1,0,1) 50.2988 56.7425

ARIMA(1,0,2) 51.2725 59.3271

ARIMA(1,1,0) 66.4215 71.2543

ARIMA(1,2,0) 96.3659 101.199

ARIMA(2,1,0) 59.8092 66.2529

ARIMA(0,1,1) 48.0445 52.8773

ARIMA(0,1,2) 50.0432 56.4868

ARIMA(2,0,1) 51.189 59.2436

ARIMA(0,2,1) 80.8514 85.6841

ARIMA(2,0,2) 53.2823 62.9478

ARIMA(2,2,0) 80.625 87.0687

ARIMA(0,2,2) 77.9538 84.3975

ARIMA(1,1,2) 50.8164 58.871

ARIMA(1,2,1) 75.1756 81.6193

ARIMA(2,1,1) 49.635 57.6896

ARIMA(2,2,1) 65.5224 73.5769

ARIMA(2,1,2) 50.7277 60.3932

ARIMA(1,2,2) 76.8825 84.937

ARIMA(0,0,0) 47.0261 50.248

ARIMA(1,1,1) 49.4466 55.8903

ARIMA(2,2,2) 67.2962 76.9617



 

 

 

166 

Table D. 31 AIC and BIC values of all 27 ARIMA combinations for Alaykoy 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 345.215 350.048

ARIMA(0,0,2) 347.213 353.656

ARIMA(0,1,0) 365.38 368.602

ARIMA(0,2,0) 402.754 405.976

ARIMA(1,0,0) 345.212 350.045

ARIMA(2,0,0) 347.212 353.656

ARIMA(1,0,1) 347.21 353.654

ARIMA(1,0,2) 344.308 352.362

ARIMA(1,1,0) 358.799 363.631

ARIMA(1,2,0) 386.363 391.195

ARIMA(2,1,0) 357.377 363.821

ARIMA(0,1,1) 345.509 350.342

ARIMA(0,1,2) 347.325 353.769

ARIMA(2,0,1) 344.154 352.209

ARIMA(0,2,1) 367.893 372.726

ARIMA(2,0,2) 349.964 359.63

ARIMA(2,2,0) 375.426 381.87

ARIMA(0,2,2) 358.881 365.325

ARIMA(1,1,2) 349.225 357.279

ARIMA(1,2,1) 361.06 367.503

ARIMA(2,1,1) 349.28 357.334

ARIMA(2,2,1) 359.393 367.448

ARIMA(2,1,2) 350.738 360.404

ARIMA(1,2,2) 359.686 367.74

ARIMA(0,0,0) 343.422 346.644

ARIMA(1,1,1) 347.281 353.725

ARIMA(2,2,2) 360.8 370.465
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Table D. 32 AIC and BIC values of all 27 ARIMA combinations for Lefkosa 

station 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 407.93 412.763

ARIMA(0,0,2) 408.475 414.919

ARIMA(0,1,0) 421.849 425.071

ARIMA(0,2,0) 460.671 463.893

ARIMA(1,0,0) 407.336 412.169

ARIMA(2,0,0) 408.704 415.148

ARIMA(1,0,1) 409.241 415.684

ARIMA(1,0,2) 410.321 418.376

ARIMA(1,1,0) 415.74 420.572

ARIMA(1,2,0) 439.969 444.801

ARIMA(2,1,0) 416.895 423.339

ARIMA(0,1,1) 411.202 416.035

ARIMA(0,1,2) 410.865 417.309

ARIMA(2,0,1) 410.607 418.662

ARIMA(0,2,1) 424.851 429.684

ARIMA(2,0,2) 406.251 415.917

ARIMA(2,2,0) 432.82 439.263

ARIMA(0,2,2) 420.226 426.669

ARIMA(1,1,2) 411.309 419.364

ARIMA(1,2,1) 419.552 425.996

ARIMA(2,1,1) 411.109 419.164

ARIMA(2,2,1) 419.234 427.289

ARIMA(2,1,2) 413.097 422.762

ARIMA(1,2,2) 421.365 429.42

ARIMA(0,0,0) 407.918 411.14

ARIMA(1,1,1) 409.656 416.1

ARIMA(2,2,2) 421.267 430.932
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Table D. 33 AIC and BIC values of all 27 ARIMA combinations for Ziyamet 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 108.189 113.022

ARIMA(0,0,2) 110.089 116.533

ARIMA(0,1,0) 136.04 139.262

ARIMA(0,2,0) 176.25 179.472

ARIMA(1,0,0) 108.222 113.055

ARIMA(2,0,0) 110.183 116.627

ARIMA(1,0,1) 106.714 113.158

ARIMA(1,0,2) 108.407 116.461

ARIMA(1,1,0) 124.339 129.172

ARIMA(1,2,0) 153.862 158.695

ARIMA(2,1,0) 122.318 128.762

ARIMA(0,1,1) 109.552 114.385

ARIMA(0,1,2) 111.305 117.749

ARIMA(2,0,1) 108.713 116.768

ARIMA(0,2,1) 140.985 145.817

ARIMA(2,0,2) 107.115 116.781

ARIMA(2,2,0) 144.912 151.356

ARIMA(0,2,2) 131.531 137.975

ARIMA(1,1,2) 111.69 119.744

ARIMA(1,2,1) 131.479 137.923

ARIMA(2,1,1) 112.375 120.429

ARIMA(2,2,1) 125.636 133.69

ARIMA(2,1,2) 111.142 120.808

ARIMA(1,2,2) 132.188 140.242

ARIMA(0,0,0) 106.658 109.88

ARIMA(1,1,1) 110.507 116.951

ARIMA(2,2,2) 117.385 127.05
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Table D. 34 AIC and BIC values of all 27 ARIMA combinations for Dipkarpaz 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 302.651 307.484

ARIMA(0,0,2) 297.875 304.319

ARIMA(0,1,0) 325.525 328.747

ARIMA(0,2,0) 361.687 364.909

ARIMA(1,0,0) 302.652 307.485

ARIMA(2,0,0) 304.163 310.607

ARIMA(1,0,1) 304.618 311.061

ARIMA(1,0,2) 302.186 310.24

ARIMA(1,1,0) 319.302 324.135

ARIMA(1,2,0) 346.872 351.705

ARIMA(2,1,0) 317.252 323.695

ARIMA(0,1,1) 302.585 307.417

ARIMA(0,1,2) 304.582 311.026

ARIMA(2,0,1) 299.988 308.043

ARIMA(0,2,1) 329.814 334.646

ARIMA(2,0,2) 299.264 308.93

ARIMA(2,2,0) 335.833 342.276

ARIMA(0,2,2) 324.306 330.749

ARIMA(1,1,2) 306.563 314.617

ARIMA(1,2,1) 324.004 330.447

ARIMA(2,1,1) 306.129 314.184

ARIMA(2,2,1) 319.639 327.693

ARIMA(2,1,2) 308.112 317.778

ARIMA(1,2,2) 325.257 333.312

ARIMA(0,0,0) 300.656 303.878

ARIMA(1,1,1) 304.585 311.028

ARIMA(2,2,2) 310.601 320.266
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Table D. 35 AIC and BIC values of all 27 ARIMA combinations for Yeni Erenkoy 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 466.62 471.453

ARIMA(0,0,2) 466.691 473.135

ARIMA(0,1,0) 487.649 490.871

ARIMA(0,2,0) 523.894 527.115

ARIMA(1,0,0) 466.77 471.603

ARIMA(2,0,0) 467.813 474.257

ARIMA(1,0,1) 468.17 474.614

ARIMA(1,0,2) 463.077 471.132

ARIMA(1,1,0) 483.284 488.116

ARIMA(1,2,0) 513.178 518.011

ARIMA(2,1,0) 476.492 482.936

ARIMA(0,1,1) 466.398 471.231

ARIMA(0,1,2) 468.2 474.644

ARIMA(2,0,1) 468.588 476.642

ARIMA(0,2,1) 490.842 495.675

ARIMA(2,0,2) 464.674 474.34

ARIMA(2,2,0) 495.372 501.816

ARIMA(0,2,2) 483.866 490.31

ARIMA(1,1,2) 469.065 477.119

ARIMA(1,2,1) 486.094 492.538

ARIMA(2,1,1) 469.348 477.403

ARIMA(2,2,1) 479.203 487.257

ARIMA(2,1,2) 470.276 479.941

ARIMA(1,2,2) 484.387 492.441

ARIMA(0,0,0) 464.937 468.159

ARIMA(1,1,1) 468.275 474.719

ARIMA(2,2,2) 483.877 493.542
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Table D. 36 AIC and BIC values of all 27 ARIMA combinations for Dortyol 

station 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 256.892 261.725

ARIMA(0,0,2) 253.608 260.051

ARIMA(0,1,0) 274.913 278.135

ARIMA(0,2,0) 307.958 311.179

ARIMA(1,0,0) 257.763 262.596

ARIMA(2,0,0) 257.089 263.532

ARIMA(1,0,1) 258.247 264.69

ARIMA(1,0,2) 252.512 260.566

ARIMA(1,1,0) 274.363 279.195

ARIMA(1,2,0) 300.24 305.072

ARIMA(2,1,0) 270.852 277.296

ARIMA(0,1,1) 263.343 268.176

ARIMA(0,1,2) 261.171 267.615

ARIMA(2,0,1) 248.66 256.715

ARIMA(0,2,1) 282.433 287.266

ARIMA(2,0,2) 250.314 259.98

ARIMA(2,2,0) 290.604 297.048

ARIMA(0,2,2) 283.046 289.489

ARIMA(1,1,2) 260.896 268.951

ARIMA(1,2,1) 281.78 288.224

ARIMA(2,1,1) 265.61 273.664

ARIMA(2,2,1) 274.691 282.746

ARIMA(2,1,2) 260.06 269.725

ARIMA(1,2,2) 278.156 286.211

ARIMA(0,0,0) 257.059 260.281

ARIMA(1,1,1) 264.577 271.02

ARIMA(2,2,2) 276.689 286.354
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Table D. 37 AIC and BIC values of all 27 ARIMA combinations for REGION 1 

(up to 2 lags) 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) -75.5525 -70.7197

ARIMA(0,0,2) -73.5754 -67.1317

ARIMA(0,1,0) -60.4619 -57.2401

ARIMA(0,2,0) -28.0902 -24.8684

ARIMA(1,0,0) -75.3313 -70.4985

ARIMA(2,0,0) -73.7096 -67.266

ARIMA(1,0,1) -73.5734 -67.1297

ARIMA(1,0,2) -75.0633 -67.0087

ARIMA(1,1,0) -62.0566 -57.2238

ARIMA(1,2,0) -36.8552 -32.0225

ARIMA(2,1,0) -64.1452 -57.7015

ARIMA(0,1,1) -77.543 -72.7103

ARIMA(0,1,2) -76.7456 -70.3019

ARIMA(2,0,1) -74.8953 -66.8407

ARIMA(0,2,1) -56.2188 -51.386

ARIMA(2,0,2) -76.0039 -66.3384

ARIMA(2,2,0) -42.0033 -35.5596

ARIMA(0,2,2) -57.9157 -51.472

ARIMA(1,1,2) -74.822 -66.7674

ARIMA(1,2,1) -56.922 -50.4783

ARIMA(2,1,1) -75.9286 -67.874

ARIMA(2,2,1) -60.194 -52.1394

ARIMA(2,1,2) -74.1481 -64.4826

ARIMA(1,2,2) -56.6499 -48.5954

ARIMA(0,0,0) -75.4895 -72.2677

ARIMA(1,1,1) -76.3361 -69.8924

ARIMA(2,2,2) -65.666 -56.0005
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Table D. 38 AIC and BIC values of all 27 ARIMA combinations for REGION 2 

(up to 2 lags) 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 427.556 432.389

ARIMA(0,0,2) 426.444 432.888

ARIMA(0,1,0) 448.683 451.905

ARIMA(0,2,0) 484.752 487.974

ARIMA(1,0,0) 427.663 432.496

ARIMA(2,0,0) 428.901 435.344

ARIMA(1,0,1) 429.23 435.674

ARIMA(1,0,2) 428.1 436.154

ARIMA(1,1,0) 444.408 449.241

ARIMA(1,2,0) 473.357 478.19

ARIMA(2,1,0) 439.473 445.916

ARIMA(0,1,1) 427.046 431.879

ARIMA(0,1,2) 428.926 435.369

ARIMA(2,0,1) 428.923 436.978

ARIMA(0,2,1) 450.75 455.583

ARIMA(2,0,2) 427.791 437.457

ARIMA(2,2,0) 455.341 461.785

ARIMA(0,2,2) 435.569 442.013

ARIMA(1,1,2) 428.218 436.273

ARIMA(1,2,1) 446.436 452.88

ARIMA(2,1,1) 440.346 448.4

ARIMA(2,2,1) 441.614 449.669

ARIMA(2,1,2) 426.872 436.538

ARIMA(1,2,2) 437.272 445.326

ARIMA(0,0,0) 425.761 428.983

ARIMA(1,1,1) 428.943 435.387

ARIMA(2,2,2) 442.416 452.082
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Table D. 39 AIC and BIC values of all 27 ARIMA combinations for REGION 3 

(up to 2 lags) 

 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 777.148 781.981

ARIMA(0,0,2) 777.809 784.253

ARIMA(0,1,0) 796.583 799.804

ARIMA(0,2,0) 832.968 836.19

ARIMA(1,0,0) 777.406 782.238

ARIMA(2,0,0) 778.697 785.141

ARIMA(1,0,1) 784.282 790.725

ARIMA(1,0,2) 779.32 787.375

ARIMA(1,1,0) 793.422 798.255

ARIMA(1,2,0) 821.824 826.657

ARIMA(2,1,0) 789.338 795.782

ARIMA(0,1,1) 783.09 787.923

ARIMA(0,1,2) 786.235 792.679

ARIMA(2,0,1) 779.969 788.023

ARIMA(0,2,1) 813.728 818.56

ARIMA(2,0,2) 779.798 789.463

ARIMA(2,2,0) 806.985 813.428

ARIMA(0,2,2) 813.015 819.459

ARIMA(1,1,2) 788.289 796.344

ARIMA(1,2,1) 820.495 826.938

ARIMA(2,1,1) 783.29 791.344

ARIMA(2,2,1) 796.749 804.804

ARIMA(2,1,2) 787.085 796.75

ARIMA(1,2,2) 814.766 822.82

ARIMA(0,0,0) 775.929 779.151

ARIMA(1,1,1) 797.867 804.31

ARIMA(2,2,2) 788.622 798.287
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Table D. 40 AIC and BIC values of all 27 ARIMA combinations for REGION 4 

(up to 2 lags) 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 354.589 359.422

ARIMA(0,0,2) 351.717 358.16

ARIMA(0,1,0) 376.159 379.38

ARIMA(0,2,0) 411.652 414.874

ARIMA(1,0,0) 354.637 359.47

ARIMA(2,0,0) 355.55 361.994

ARIMA(1,0,1) 356.31 362.754

ARIMA(1,0,2) 349.867 357.921

ARIMA(1,1,0) 371.735 376.568

ARIMA(1,2,0) 400.402 405.235

ARIMA(2,1,0) 367.069 373.513

ARIMA(0,1,1) 354.769 359.602

ARIMA(0,1,2) 356.604 363.048

ARIMA(2,0,1) 357.372 365.426

ARIMA(0,2,1) 381.432 386.264

ARIMA(2,0,2) ERROR ERROR

ARIMA(2,2,0) 384.701 391.145

ARIMA(0,2,2) 377.786 384.23

ARIMA(1,1,2) 358.045 366.1

ARIMA(1,2,1) 376.803 383.247

ARIMA(2,1,1) 357.646 365.701

ARIMA(2,2,1) 369.085 377.139

ARIMA(2,1,2) 359.342 369.007

ARIMA(1,2,2) 378.263 386.318

ARIMA(0,0,0) 352.758 355.98

ARIMA(1,1,1) 356.701 363.145

ARIMA(2,2,2) 369.192 378.858
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Table D. 41  AIC and BIC values of all 27 ARIMA combinations for North Cyprus 

annual average 

 

 

 

 

 

ARIMA MODEL AIC BIC

ARIMA(0,0,1) 485.173 490.006

ARIMA(0,0,2) 482.899 489.342

ARIMA(0,1,0) 505.448 508.67

ARIMA(0,2,0) 540.712 543.934

ARIMA(1,0,0) 485.372 490.205

ARIMA(2,0,0) 486.317 492.761

ARIMA(1,0,1) 486.49 492.933

ARIMA(1,0,2) 484.077 492.131

ARIMA(1,1,0) 502.129 506.962

ARIMA(1,2,0) 530.685 535.518

ARIMA(2,1,0) 497.147 503.591

ARIMA(0,1,1) 485.485 490.317

ARIMA(0,1,2) 487.047 493.491

ARIMA(2,0,1) 484.047 492.102

ARIMA(0,2,1) 508.389 513.222

ARIMA(2,0,2) 482.244 491.909

ARIMA(2,2,0) 512.814 519.258

ARIMA(0,2,2) 502.405 508.849

ARIMA(1,1,2) 492.574 500.628

ARIMA(1,2,1) 504.777 511.22

ARIMA(2,1,1) 497.351 505.406

ARIMA(2,2,1) 499.167 507.221

ARIMA(2,1,2) 494.541 504.206

ARIMA(1,2,2) 503.729 511.783

ARIMA(0,0,0) 483.626 486.848

ARIMA(1,1,1) 487.051 493.495

ARIMA(2,2,2) 499.499 509.164
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Table D. 42 Autocorrelation Coefficient Function (ACF) Values for transformed 

and observed annual data of 4 clusters at Lag 0, Lag 1, Lag 2 and Lag 3 

Group/ACF value Lag 0 Lag 1 Lag 2 Lag 3 

Group 1 

1.0 

(1.0) 

0.21 

(0.25) 

-0.02 

(0.04) 

-0.06 

(0.04) 

Group 2 

1.0 

(1.0) 

0.06 

(0.07) 

-0.12 

(-0.09) 

0.016 

(0.02) 

Group 3 

1.0 

(1.0) 

0.12 

(0.11) 

-0.11 

(-0.12) 

-0.007 

(-0.02) 

Group 4 

1.0 

(1.0) 

0.05 

(0.06) 

-0.14 

(-0.13) 

-0.01 

(-0.03) 

 

 

 


